- -

An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conesa Domínguez, Claudia es_ES
dc.contributor.author García Breijo, Eduardo es_ES
dc.contributor.author Loeff, Edwin es_ES
dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Fito Maupoey, Pedro es_ES
dc.contributor.author Laguarda Miró, Nicolás es_ES
dc.date.accessioned 2016-04-19T12:37:41Z
dc.date.available 2016-04-19T12:37:41Z
dc.date.issued 2015-09
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/62745
dc.description.abstract Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. es_ES
dc.description.sponsorship Financial support from the Spanish Government and European FEDER funds (MAT2012-38429-C04-04) and FPI-UPV Program are gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bioethanol es_ES
dc.subject Saccharification es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject Fermentable sugars es_ES
dc.subject Pineapple waste es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s150922941
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-04/ES/DESARROLLO DE NUEVOS SISTEMAS DE DETECCION Y ACCION BASADOS EN TECNOLOGIAS ELECTRONICAS Y MICROELECTRONICAS PARA SU APLICACION EN SISTEMAS DE LIBERACION Y DETECCION DE GASES/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Conesa Domínguez, C.; García Breijo, E.; Loeff, E.; Seguí Gil, L.; Fito Maupoey, P.; Laguarda Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors. 15(9):22941-22955. https://doi.org/10.3390/s150922941 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s150922941 es_ES
dc.description.upvformatpinicio 22941 es_ES
dc.description.upvformatpfin 22955 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 293449 es_ES
dc.identifier.pmid 26378537 en_EN
dc.identifier.pmcid PMC4610418 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references FAOSTAT—Food and Agriculture Organization of the United Nations. Statistics Divisionhttp://faostat.fao.org es_ES
dc.description.references Reinhardt, A., & Rodriguez, L. V. (2009). INDUSTRIAL PROCESSING OF PINEAPPLE â TRENDS AND PERSPECTIVES. Acta Horticulturae, (822), 323-328. doi:10.17660/actahortic.2009.822.40 es_ES
dc.description.references Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385-391. doi:10.1016/j.fbp.2011.12.006 es_ES
dc.description.references Nigam, J. (1999). Continuous ethanol production from pineapple cannery waste. Journal of Biotechnology, 72(3), 197-202. doi:10.1016/s0168-1656(99)00106-6 es_ES
dc.description.references Tanaka, K., Hilary, Z. D., & Ishizaki, A. (1999). Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. Journal of Bioscience and Bioengineering, 87(5), 642-646. doi:10.1016/s1389-1723(99)80128-5 es_ES
dc.description.references Ruangviriyachai, C., Niwaswong, C., Kosaikanon, N., Chanthai, S., & Chaimart, P. (2010). Pineapple Peel Waste for Bioethanol Production. Journal of Biotechnology, 150, 10-10. doi:10.1016/j.jbiotec.2010.08.041 es_ES
dc.description.references Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61(1), 263-289. doi:10.1146/annurev-arplant-042809-112315 es_ES
dc.description.references Yang, B., Dai, Z., Ding, S.-Y., & Wyman, C. E. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels, 2(4), 421-449. doi:10.4155/bfs.11.116 es_ES
dc.description.references De Cortes Sánchez-Mata, M., Cámara-Hurtado, M., & Díez-Marqués, C. (2001). Identification and quantification of soluble sugars in green beans by HPLC. European Food Research and Technology, 214(3), 254-258. doi:10.1007/s00217-001-0447-0 es_ES
dc.description.references Karkacier, M., Erbas, M., Uslu, M. K., & Aksu, M. (2003). Comparison of Different Extraction and Detection Methods for Sugars Using Amino-Bonded Phase HPLC. Journal of Chromatographic Science, 41(6), 331-333. doi:10.1093/chromsci/41.6.331 es_ES
dc.description.references McRae, D. A., & Esrick, M. A. (1992). The dielectric parameters of excised EMT-6 tumours and their change during hyperthermia. Physics in Medicine and Biology, 37(11), 2045-2058. doi:10.1088/0031-9155/37/11/002 es_ES
dc.description.references Piccoli, A., Pillon, L., & Dumler, F. (2002). Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition, 18(2), 153-167. doi:10.1016/s0899-9007(01)00665-7 es_ES
dc.description.references Nescolarde, L., Piccoli, A., Román, A., Núñez, A., Morales, R., Tamayo, J., … Rosell, J. (2004). Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality. Physiological Measurement, 25(5), 1271-1280. doi:10.1088/0967-3334/25/5/016 es_ES
dc.description.references Pan, L. K., Huang, H. T., & Sun, C. Q. (2003). Dielectric relaxation and transition of porous silicon. Journal of Applied Physics, 94(4), 2695-2700. doi:10.1063/1.1594821 es_ES
dc.description.references Prabakar, K., & Mallikarjun Rao, S. P. (2007). Complex impedance spectroscopy studies on fatigued soft and hard PZT ceramics. Journal of Alloys and Compounds, 437(1-2), 302-310. doi:10.1016/j.jallcom.2006.07.108 es_ES
dc.description.references Cen, J., Vukas, M., Barton, G., Kavanagh, J., & Coster, H. G. L. (2015). Real time fouling monitoring with Electrical Impedance Spectroscopy. Journal of Membrane Science, 484, 133-139. doi:10.1016/j.memsci.2015.03.014 es_ES
dc.description.references Houssin, T., Follet, J., Follet, A., Dei-Cas, E., & Senez, V. (2010). Label-free analysis of water-polluting parasite by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 25(5), 1122-1129. doi:10.1016/j.bios.2009.09.039 es_ES
dc.description.references Rosborg, B., & Pan, J. (2008). An electrochemical impedance spectroscopy study of copper in a bentonite/saline groundwater environment. Electrochimica Acta, 53(25), 7556-7564. doi:10.1016/j.electacta.2008.04.021 es_ES
dc.description.references García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013 es_ES
dc.description.references Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010 es_ES
dc.description.references Karásková, P., Fuentes, A., Fernández-Segovia, I., Alcañiz, M., Masot, R., & Barat, J. M. (2011). Development of a low-cost non-destructive system for measuring moisture and salt content in smoked fish products. Procedia Food Science, 1, 1195-1201. doi:10.1016/j.profoo.2011.09.178 es_ES
dc.description.references Alcañiz, M., Vivancos, J.-L., Masot, R., Ibañez, J., Raga, M., Soto, J., & Martínez-Máñez, R. (2012). Design of an electronic system and its application to electronic tongues using variable amplitude pulse voltammetry and impedance spectroscopy. Journal of Food Engineering, 111(1), 122-128. doi:10.1016/j.jfoodeng.2012.01.014 es_ES
dc.description.references Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113(2), 210-216. doi:10.1016/j.jfoodeng.2012.06.003 es_ES
dc.description.references Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001 es_ES
dc.description.references Pérez-Esteve, E., Fuentes, A., Grau, R., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35(1), 360-365. doi:10.1016/j.foodcont.2013.07.025 es_ES
dc.description.references Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049 es_ES
dc.description.references De Jesús, C., Hernández-Coronado, G., Girón, J., Barat, J. M., Pagan, M. J., Alcañiz, M., … Grau, R. (2014). Classification of unaltered and altered dry-cured ham by impedance spectroscopy: A preliminary study. Meat Science, 98(4), 695-700. doi:10.1016/j.meatsci.2014.05.014 es_ES
dc.description.references Rizo, A., Fuentes, A., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2013). Development of a new salmon salting–smoking method and process monitoring by impedance spectroscopy. LWT - Food Science and Technology, 51(1), 218-224. doi:10.1016/j.lwt.2012.09.025 es_ES
dc.description.references Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003 es_ES
dc.description.references Llobet, E., Hines, E. L., Gardner, J. W., Bartlett, P. N., & Mottram, T. T. (1999). Fuzzy ARTMAP based electronic nose data analysis. Sensors and Actuators B: Chemical, 61(1-3), 183-190. doi:10.1016/s0925-4005(99)00288-9 es_ES
dc.description.references Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186 es_ES
dc.description.references Moreno-Barón, L., Cartas, R., Merkoçi, A., Alegret, S., del Valle, M., Leija, L., … Muñoz, R. (2006). Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 113(1), 487-499. doi:10.1016/j.snb.2005.03.063 es_ES
dc.description.references Gil, L., Barat, J. M., Baigts, D., Martínez-Máñez, R., Soto, J., Garcia-Breijo, E., … Llobet, E. (2011). Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chemistry, 126(3), 1261-1268. doi:10.1016/j.foodchem.2010.11.054 es_ES
dc.description.references Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001 es_ES
dc.description.references Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418 es_ES
dc.description.references Laguarda-Miro, N., Ferreira, F. W., García-Breijo, E., Ibáñez-Civera, J., Gil-Sánchez, L., & Garrigues-Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical, 171-172, 528-536. doi:10.1016/j.snb.2012.05.025 es_ES
dc.description.references Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030 es_ES
dc.description.references Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem