- -

Does the type of event influence how user interactions evolve on Twitter?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Does the type of event influence how user interactions evolve on Twitter?

Mostrar el registro completo del ítem

Del Val Noguera, E.; Rebollo Pedruelo, M.; Botti Navarro, VJ. (2015). Does the type of event influence how user interactions evolve on Twitter?. PLoS ONE. 10(5):21-53. https://doi.org/10.1371/journal.pone.0124049

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62891

Ficheros en el ítem

Metadatos del ítem

Título: Does the type of event influence how user interactions evolve on Twitter?
Autor: Del Val Noguera, Elena Rebollo Pedruelo, Miguel Botti Navarro, Vicente Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace ...[+]
Palabras clave: Social networks analysis , Artificial Intelligence , Complex systems
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0124049
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0124049
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2012-36586-C03-01/ES/SOCIEDADES HUMANO-AGENTE: DISEÑO, FORMACION Y COORDINACION/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F019/ES/ HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/
info:eu-repo/grantAgreement/UPV//SP20140800/ES/Redes Sociales Virtuales/
Descripción: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Agradecimientos:
The author(s) received specific funding for this work from the research group (Grupo de Inteligencia Informatica e Inteligencia Artificial) where the authors are currently working. The funders had no role in study design, ...[+]
Tipo: Artículo

References

Licoppe, C., & Smoreda, Z. (2005). Are social networks technologically embedded? Social Networks, 27(4), 317-335. doi:10.1016/j.socnet.2004.11.001

European Commission. JRC Scientific and Policy Report EUR 25295 EN ‘Pan-European Survey of Practices, Attitudes and Policy Preferences as regards Personal Identity Data Management’; 2012. http://is.jrc.ec.europa.eu/pages/TFS/documents/EIDSURVEY_Web_001.pdf Last access: 27-01-2015.

Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169-2188. doi:10.1002/asi.21149 [+]
Licoppe, C., & Smoreda, Z. (2005). Are social networks technologically embedded? Social Networks, 27(4), 317-335. doi:10.1016/j.socnet.2004.11.001

European Commission. JRC Scientific and Policy Report EUR 25295 EN ‘Pan-European Survey of Practices, Attitudes and Policy Preferences as regards Personal Identity Data Management’; 2012. http://is.jrc.ec.europa.eu/pages/TFS/documents/EIDSURVEY_Web_001.pdf Last access: 27-01-2015.

Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169-2188. doi:10.1002/asi.21149

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5-es. doi:10.1145/1232722.1232727

Guimerà, R., Llorente, A., Moro, E., & Sales-Pardo, M. (2012). Predicting Human Preferences Using the Block Structure of Complex Social Networks. PLoS ONE, 7(9), e44620. doi:10.1371/journal.pone.0044620

Borondo J, Morales AJ, Losada JC, Benito RM. Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential Election as a case study.; 2013.

Ahn YY, Han S, Kwak H, Moon S, Jeong H. Analysis of Topological Characteristics of Huge Online Social Networking Services. In: Proceedings of the 16th International Conference on World Wide Web. WWW ‘07. New York, NY, USA: ACM; 2007. p. 835–844.

Romero DM, Galuba W, Asur S, Huberman BA. Influence and Passivity in Social Media. In: Proceedings of the 20th International Conference Companion on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 113–114.

Romero DM, Meeder B, Kleinberg J. Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 695–704.

Bastiaensens, S., Vandebosch, H., Poels, K., Van Cleemput, K., DeSmet, A., & De Bourdeaudhuij, I. (2014). Cyberbullying on social network sites. An experimental study into bystanders’ behavioural intentions to help the victim or reinforce the bully. Computers in Human Behavior, 31, 259-271. doi:10.1016/j.chb.2013.10.036

Google. Google Co-op; 2014. [Access 5-Jan-2014]. http://www.google.com/coop/

Wasserman, S., & Faust, K. (1994). Social Network Analysis. doi:10.1017/cbo9780511815478

Kossinets, G. (2006). Empirical Analysis of an Evolving Social Network. Science, 311(5757), 88-90. doi:10.1126/science.1116869

Scott, J. (2010). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21-26. doi:10.1007/s13278-010-0012-6

Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001

Huberman BA, Romero DM, Wu F. Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:08121045. 2008;.

Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and Analysis of Online Social Networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. IMC ‘07. New York, NY, USA: ACM; 2007. p. 29–42.

Borge-Holthoefer, J., Rivero, A., García, I., Cauhé, E., Ferrer, A., Ferrer, D., … Moreno, Y. (2011). Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study. PLoS ONE, 6(8), e23883. doi:10.1371/journal.pone.0023883

na López IP, Congosto M, Aragón P. Spanish Indignados and the evolution of 15M: towards networked para-institutions. Big Data: Challenges and Opportunities. 2013;p. 359–386.

Cha M, Haddadi H, Benevenuto F, Gummadi KP. Measuring user influence in Twitter: The million follower fallacy. In: in ICWSM ‘10: Proceedings of international AAAI Conference on Weblogs and Social; 2010.

Shamma DA, Kennedy L, Churchill EF. Tweet the Debates: Understanding Community Annotation of Uncollected Sources. In: Proceedings of the First SIGMM Workshop on Social Media. WSM ‘09. New York, NY, USA: ACM; 2009. p. 3–10. Available from: http://doi.acm.org/10.1145/1631144.1631148

Diakopoulos NA, Shamma DA. Characterizing Debate Performance via Aggregated Twitter Sentiment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ‘10. ACM; 2010. p. 1195–1198.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem