Mostrar el registro sencillo del ítem
dc.contributor.author | Del Val Noguera, Elena | es_ES |
dc.contributor.author | Rebollo Pedruelo, Miguel | es_ES |
dc.contributor.author | Botti Navarro, Vicente Juan | es_ES |
dc.date.accessioned | 2016-04-25T13:54:41Z | |
dc.date.available | 2016-04-25T13:54:41Z | |
dc.date.issued | 2015-05-11 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/62891 | |
dc.description | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited | es_ES |
dc.description.abstract | The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. | es_ES |
dc.description.sponsorship | The author(s) received specific funding for this work from the research group (Grupo de Inteligencia Informatica e Inteligencia Artificial) where the authors are currently working. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Social networks analysis | es_ES |
dc.subject | Artificial Intelligence | es_ES |
dc.subject | Complex systems | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | BIBLIOTECONOMIA Y DOCUMENTACION | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Does the type of event influence how user interactions evolve on Twitter? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0124049 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-36586-C03-01/ES/SOCIEDADES HUMANO-AGENTE: DISEÑO, FORMACION Y COORDINACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F019/ES/ HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20140800/ES/Redes Sociales Virtuales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Del Val Noguera, E.; Rebollo Pedruelo, M.; Botti Navarro, VJ. (2015). Does the type of event influence how user interactions evolve on Twitter?. PLoS ONE. 10(5):21-53. https://doi.org/10.1371/journal.pone.0124049 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0124049 | es_ES |
dc.description.upvformatpinicio | 21 | es_ES |
dc.description.upvformatpfin | 53 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 290279 | es_ES |
dc.identifier.pmid | 25961305 | en_EN |
dc.identifier.pmcid | PMC4427504 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Licoppe, C., & Smoreda, Z. (2005). Are social networks technologically embedded? Social Networks, 27(4), 317-335. doi:10.1016/j.socnet.2004.11.001 | es_ES |
dc.description.references | European Commission. JRC Scientific and Policy Report EUR 25295 EN ‘Pan-European Survey of Practices, Attitudes and Policy Preferences as regards Personal Identity Data Management’; 2012. http://is.jrc.ec.europa.eu/pages/TFS/documents/EIDSURVEY_Web_001.pdf Last access: 27-01-2015. | es_ES |
dc.description.references | Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169-2188. doi:10.1002/asi.21149 | es_ES |
dc.description.references | Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5-es. doi:10.1145/1232722.1232727 | es_ES |
dc.description.references | Guimerà, R., Llorente, A., Moro, E., & Sales-Pardo, M. (2012). Predicting Human Preferences Using the Block Structure of Complex Social Networks. PLoS ONE, 7(9), e44620. doi:10.1371/journal.pone.0044620 | es_ES |
dc.description.references | Borondo J, Morales AJ, Losada JC, Benito RM. Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential Election as a case study.; 2013. | es_ES |
dc.description.references | Ahn YY, Han S, Kwak H, Moon S, Jeong H. Analysis of Topological Characteristics of Huge Online Social Networking Services. In: Proceedings of the 16th International Conference on World Wide Web. WWW ‘07. New York, NY, USA: ACM; 2007. p. 835–844. | es_ES |
dc.description.references | Romero DM, Galuba W, Asur S, Huberman BA. Influence and Passivity in Social Media. In: Proceedings of the 20th International Conference Companion on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 113–114. | es_ES |
dc.description.references | Romero DM, Meeder B, Kleinberg J. Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web. WWW ‘11. New York, NY, USA: ACM; 2011. p. 695–704. | es_ES |
dc.description.references | Bastiaensens, S., Vandebosch, H., Poels, K., Van Cleemput, K., DeSmet, A., & De Bourdeaudhuij, I. (2014). Cyberbullying on social network sites. An experimental study into bystanders’ behavioural intentions to help the victim or reinforce the bully. Computers in Human Behavior, 31, 259-271. doi:10.1016/j.chb.2013.10.036 | es_ES |
dc.description.references | Google. Google Co-op; 2014. [Access 5-Jan-2014]. http://www.google.com/coop/ | es_ES |
dc.description.references | Wasserman, S., & Faust, K. (1994). Social Network Analysis. doi:10.1017/cbo9780511815478 | es_ES |
dc.description.references | Kossinets, G. (2006). Empirical Analysis of an Evolving Social Network. Science, 311(5757), 88-90. doi:10.1126/science.1116869 | es_ES |
dc.description.references | Scott, J. (2010). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21-26. doi:10.1007/s13278-010-0012-6 | es_ES |
dc.description.references | Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001 | es_ES |
dc.description.references | Huberman BA, Romero DM, Wu F. Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:08121045. 2008;. | es_ES |
dc.description.references | Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and Analysis of Online Social Networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. IMC ‘07. New York, NY, USA: ACM; 2007. p. 29–42. | es_ES |
dc.description.references | Borge-Holthoefer, J., Rivero, A., García, I., Cauhé, E., Ferrer, A., Ferrer, D., … Moreno, Y. (2011). Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study. PLoS ONE, 6(8), e23883. doi:10.1371/journal.pone.0023883 | es_ES |
dc.description.references | na López IP, Congosto M, Aragón P. Spanish Indignados and the evolution of 15M: towards networked para-institutions. Big Data: Challenges and Opportunities. 2013;p. 359–386. | es_ES |
dc.description.references | Cha M, Haddadi H, Benevenuto F, Gummadi KP. Measuring user influence in Twitter: The million follower fallacy. In: in ICWSM ‘10: Proceedings of international AAAI Conference on Weblogs and Social; 2010. | es_ES |
dc.description.references | Shamma DA, Kennedy L, Churchill EF. Tweet the Debates: Understanding Community Annotation of Uncollected Sources. In: Proceedings of the First SIGMM Workshop on Social Media. WSM ‘09. New York, NY, USA: ACM; 2009. p. 3–10. Available from: http://doi.acm.org/10.1145/1631144.1631148 | es_ES |
dc.description.references | Diakopoulos NA, Shamma DA. Characterizing Debate Performance via Aggregated Twitter Sentiment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ‘10. ACM; 2010. p. 1195–1198. | es_ES |