- -

Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil Ortiz, Ricardo es_ES
dc.contributor.author Bautista Carrascosa, Inmaculada es_ES
dc.contributor.author Boscaiu Neagu, Mónica Tereza es_ES
dc.contributor.author Lidón Cerezuela, Antonio Luis es_ES
dc.contributor.author Wankhade, Shantanu Devidas es_ES
dc.contributor.author Sánchez Rodríguez, Héctor es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Vicente Meana, Óscar es_ES
dc.date.accessioned 2016-04-26T10:21:09Z
dc.date.available 2016-04-26T10:21:09Z
dc.date.issued 2014
dc.identifier.issn 2041-2851
dc.identifier.uri http://hdl.handle.net/10251/62935
dc.description.abstract In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots)were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl2, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However except for P. crassifolia proline may play a role in stress tolerance based on its osmoprotectant functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural conditions and do not, therefore, need to activate antioxidant defence mechanisms es_ES
dc.description.sponsorship This work was funded by a grant to O.V. from the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP): AoB es_ES
dc.relation.ispartof AoB PLANTS es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Drought es_ES
dc.subject Inula crithmoides es_ES
dc.subject Juncus acutus es_ES
dc.subject Juncus maritimus es_ES
dc.subject Littoral salt marsh es_ES
dc.subject Mediterranean climate es_ES
dc.subject Oxidative stress es_ES
dc.subject Plantago crassifolia es_ES
dc.subject Sarcocornia fruticosa es_ES
dc.subject Soil salinity es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Responses of five Mediterranean halophytes to seasonal changes in environmental conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/aobpla/plu049
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-00438/ES/RESPUESTAS DE LAS PLANTAS AL ESTRES ABIOTICO: CORRELACION CON LAS CARACTERISTICAS EDAFICAS DE SUS HABITATS NATURALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Gil Ortiz, R.; Bautista Carrascosa, I.; Boscaiu Neagu, MT.; Lidón Cerezuela, AL.; Wankhade, SD.; Sánchez Rodríguez, H.; Llinares Palacios, JV.... (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS. 6:1-18. https://doi.org/10.1093/aobpla/plu049 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/aobpla/plu049 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 283287 es_ES
dc.identifier.pmid 25139768 en_EN
dc.identifier.pmcid PMC4163002 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Adrian-Romero, M., Wilson, S. J., Blunden, G., Yang, M.-H., Carabot-Cuervo, A., & Bashir, A. K. (1998). Betaines in coastal plants. Biochemical Systematics and Ecology, 26(5), 535-543. doi:10.1016/s0305-1978(98)00013-1 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. doi:10.1007/s10535-009-0046-7 es_ES
dc.description.references Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2010). Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiologiae Plantarum, 33(4), 1261-1270. doi:10.1007/s11738-010-0656-x es_ES
dc.description.references Albert, A., Yenush, L., Gil-Mascarell, M. ., Rodriguez, P. ., Patel, S., Martı́nez-Ripoll, M., … Serrano, R. (2000). X-ray structure of yeast hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. Journal of Molecular Biology, 295(4), 927-938. doi:10.1006/jmbi.1999.3408 es_ES
dc.description.references Albert, R., & Popp, M. (1977). Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia, 27(2), 157-170. doi:10.1007/bf00345820 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references Bazihizina, N., Barrett-Lennard, E. G., & Colmer, T. D. (2012). Plant growth and physiology under heterogeneous salinity. Plant and Soil, 354(1-2), 1-19. doi:10.1007/s11104-012-1193-8 es_ES
dc.description.references Amor, N. B., Jimenez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2006). Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum, 126(3), 446-457. doi:10.1111/j.1399-3054.2006.00620.x es_ES
dc.description.references Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., … Abdelly, C. (2013). Physiological response of halophytes to multiple stresses. Functional Plant Biology, 40(9), 883. doi:10.1071/fp13074 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446 es_ES
dc.description.references Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 es_ES
dc.description.references Boyer, J. S. (1982). Plant Productivity and Environment. Science, 218(4571), 443-448. doi:10.1126/science.218.4571.443 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science, 3(11), 411-412. doi:10.1016/s1360-1385(98)01331-4 es_ES
dc.description.references Cavalieri, A. J. (1983). Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia, 57(1-2), 20-24. doi:10.1007/bf00379556 es_ES
dc.description.references Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Demiral, T., & Türkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161(10), 1089-1100. doi:10.1016/j.jplph.2004.03.009 es_ES
dc.description.references Doddema, H., Saad Eddin, R., & Mahasneh, A. (1986). Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyteArthrocnemum fruticosum (L.) Moq. Plant and Soil, 92(2), 279-293. doi:10.1007/bf02372641 es_ES
dc.description.references FEDOROFF, N. (2006). Redox Regulatory Mechanisms in Cellular Stress Responses. Annals of Botany, 98(2), 289-300. doi:10.1093/aob/mcl128 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513 es_ES
dc.description.references Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 37(7), 604. doi:10.1071/fp09269 es_ES
dc.description.references Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium. Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Glenn, E. (1999). Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. doi:10.1016/s0735-2689(99)00388-3 es_ES
dc.description.references Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789 es_ES
dc.description.references Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073 es_ES
dc.description.references HAUSER, F., & HORIE, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress. Plant, Cell & Environment, 33(4), 552-565. doi:10.1111/j.1365-3040.2009.02056.x es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Horie, T., Hauser, F., & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 14(12), 660-668. doi:10.1016/j.tplants.2009.08.009 es_ES
dc.description.references Katschnig, D., Broekman, R., & Rozema, J. (2013). Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environmental and Experimental Botany, 92, 32-42. doi:10.1016/j.envexpbot.2012.04.002 es_ES
dc.description.references Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45(1), 73-84. doi:10.1006/jare.1999.0617 es_ES
dc.description.references Koiwa, H., Bressan, R. A., & Hasegawa, P. M. (2006). Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany, 57(5), 1119-1128. doi:10.1093/jxb/erj093 es_ES
dc.description.references Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460 es_ES
dc.description.references Kronzucker, H. J., & Britto, D. T. (2010). Sodium transport in plants: a critical review. New Phytologist, 189(1), 54-81. doi:10.1111/j.1469-8137.2010.03540.x es_ES
dc.description.references Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products, 31(1), 13-19. doi:10.1016/j.indcrop.2009.07.015 es_ES
dc.description.references Li, Y. (2008). Kinetics of the antioxidant response to salinity in the halophyte <I>Limonium bicolour</I>. Plant, Soil and Environment, 54(No. 11), 493-497. doi:10.17221/434-pse es_ES
dc.description.references Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x es_ES
dc.description.references MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S., & MITTLER, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467. doi:10.1111/j.1365-3040.2009.02041.x es_ES
dc.description.references Moghaieb, R. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166(5), 1345-1349. doi:10.1016/j.plantsci.2004.01.016 es_ES
dc.description.references Mouri, C., Benhassaini, H., Bendimered, F. Z., & Belkhodja, M. (2012). Variation saisonnière de la teneur en proline et en sucres solubles chez l’oyat (Ammophila arenaria(L.) Link) provenant du milieu naturel de la côte ouest de l’Algérie. Acta Botanica Gallica, 159(1), 127-135. doi:10.1080/12538078.2012.673822 es_ES
dc.description.references Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Murakeözy, É. P., Smirnoff, N., Nagy, Z., & Tuba, Z. (2002). Seasonal accumulation pattern of pinitol and other carbohydrates in Limonium gmelini subsp. hungarica. Journal of Plant Physiology, 159(5), 485-490. doi:10.1078/0176-1617-00617 es_ES
dc.description.references Murakeözy, É. P., Nagy, Z., Duhazé, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160(4), 395-401. doi:10.1078/0176-1617-00790 es_ES
dc.description.references Nawaz, K., & Ashraf, M. (2010). Exogenous Application of Glycinebetaine Modulates Activities of Antioxidants in Maize Plants Subjected to Salt Stress. Journal of Agronomy and Crop Science, 196(1), 28-37. doi:10.1111/j.1439-037x.2009.00385.x es_ES
dc.description.references Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 109(3), 735-742. doi:10.1104/pp.109.3.735 es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 es_ES
dc.description.references Parida, A. K., Das, A. B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161(5), 531-542. doi:10.1078/0176-1617-01084 es_ES
dc.description.references Popp, M., & Polania, J. (1989). Compatible solutes in different organs of mangrove trees. Annales des Sciences Forestières, 46(Supplement), 842s-844s. doi:10.1051/forest:198905art0185 es_ES
dc.description.references Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., … Enrique Figueroa, M. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 128(1), 116-124. doi:10.1111/j.1399-3054.2006.00719.x es_ES
dc.description.references RENGEL, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15(6), 625-632. doi:10.1111/j.1365-3040.1992.tb01004.x es_ES
dc.description.references Rodríguez-Navarro, A., & Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany, 57(5), 1149-1160. doi:10.1093/jxb/erj068 es_ES
dc.description.references Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.x es_ES
dc.description.references SHORT, D. (1999). Salt Tolerance in the HalophyteHalosarcia pergranulatasubsp.pergranulata. Annals of Botany, 83(3), 207-213. doi:10.1006/anbo.1998.0812 es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references Tipirdamaz, R., Gagneul, D., Duhazé, C., Aïnouche, A., Monnier, C., Özkum, D., & Larher, F. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 57(1-2), 139-153. doi:10.1016/j.envexpbot.2005.05.007 es_ES
dc.description.references Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2-9. doi:10.1016/j.envexpbot.2009.05.008 es_ES
dc.description.references Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 es_ES
dc.description.references Walker, D. J., Romero, P., de Hoyos, A., & Correal, E. (2008). Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environmental and Experimental Botany, 64(3), 217-224. doi:10.1016/j.envexpbot.2008.05.012 es_ES
dc.description.references Watson, E. B., & Byrne, R. (2009). Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology, 205(1), 113-128. doi:10.1007/s11258-009-9602-7 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Zhu, J.-K. (2000). Genetic Analysis of Plant Salt Tolerance Using Arabidopsis: Fig. 1. Plant Physiology, 124(3), 941-948. doi:10.1104/pp.124.3.941 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem