Mostrar el registro sencillo del ítem
dc.contributor.author | Gil Ortiz, Ricardo | es_ES |
dc.contributor.author | Bautista Carrascosa, Inmaculada | es_ES |
dc.contributor.author | Boscaiu Neagu, Mónica Tereza | es_ES |
dc.contributor.author | Lidón Cerezuela, Antonio Luis | es_ES |
dc.contributor.author | Wankhade, Shantanu Devidas | es_ES |
dc.contributor.author | Sánchez Rodríguez, Héctor | es_ES |
dc.contributor.author | Llinares Palacios, Josep Vicent | es_ES |
dc.contributor.author | Vicente Meana, Óscar | es_ES |
dc.date.accessioned | 2016-04-26T10:21:09Z | |
dc.date.available | 2016-04-26T10:21:09Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2041-2851 | |
dc.identifier.uri | http://hdl.handle.net/10251/62935 | |
dc.description.abstract | In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots)were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl2, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However except for P. crassifolia proline may play a role in stress tolerance based on its osmoprotectant functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural conditions and do not, therefore, need to activate antioxidant defence mechanisms | es_ES |
dc.description.sponsorship | This work was funded by a grant to O.V. from the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP): AoB | es_ES |
dc.relation.ispartof | AoB PLANTS | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Drought | es_ES |
dc.subject | Inula crithmoides | es_ES |
dc.subject | Juncus acutus | es_ES |
dc.subject | Juncus maritimus | es_ES |
dc.subject | Littoral salt marsh | es_ES |
dc.subject | Mediterranean climate | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Plantago crassifolia | es_ES |
dc.subject | Sarcocornia fruticosa | es_ES |
dc.subject | Soil salinity | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Responses of five Mediterranean halophytes to seasonal changes in environmental conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/aobpla/plu049 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2008-00438/ES/RESPUESTAS DE LAS PLANTAS AL ESTRES ABIOTICO: CORRELACION CON LAS CARACTERISTICAS EDAFICAS DE SUS HABITATS NATURALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Gil Ortiz, R.; Bautista Carrascosa, I.; Boscaiu Neagu, MT.; Lidón Cerezuela, AL.; Wankhade, SD.; Sánchez Rodríguez, H.; Llinares Palacios, JV.... (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS. 6:1-18. https://doi.org/10.1093/aobpla/plu049 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1093/aobpla/plu049 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.relation.senia | 283287 | es_ES |
dc.identifier.pmid | 25139768 | en_EN |
dc.identifier.pmcid | PMC4163002 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Adrian-Romero, M., Wilson, S. J., Blunden, G., Yang, M.-H., Carabot-Cuervo, A., & Bashir, A. K. (1998). Betaines in coastal plants. Biochemical Systematics and Ecology, 26(5), 535-543. doi:10.1016/s0305-1978(98)00013-1 | es_ES |
dc.description.references | Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 | es_ES |
dc.description.references | Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. doi:10.1007/s10535-009-0046-7 | es_ES |
dc.description.references | Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2010). Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiologiae Plantarum, 33(4), 1261-1270. doi:10.1007/s11738-010-0656-x | es_ES |
dc.description.references | Albert, A., Yenush, L., Gil-Mascarell, M. ., Rodriguez, P. ., Patel, S., Martı́nez-Ripoll, M., … Serrano, R. (2000). X-ray structure of yeast hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. Journal of Molecular Biology, 295(4), 927-938. doi:10.1006/jmbi.1999.3408 | es_ES |
dc.description.references | Albert, R., & Popp, M. (1977). Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia, 27(2), 157-170. doi:10.1007/bf00345820 | es_ES |
dc.description.references | Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 | es_ES |
dc.description.references | Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003 | es_ES |
dc.description.references | Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 | es_ES |
dc.description.references | Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 | es_ES |
dc.description.references | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 | es_ES |
dc.description.references | Bazihizina, N., Barrett-Lennard, E. G., & Colmer, T. D. (2012). Plant growth and physiology under heterogeneous salinity. Plant and Soil, 354(1-2), 1-19. doi:10.1007/s11104-012-1193-8 | es_ES |
dc.description.references | Amor, N. B., Jimenez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2006). Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum, 126(3), 446-457. doi:10.1111/j.1399-3054.2006.00620.x | es_ES |
dc.description.references | Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., … Abdelly, C. (2013). Physiological response of halophytes to multiple stresses. Functional Plant Biology, 40(9), 883. doi:10.1071/fp13074 | es_ES |
dc.description.references | Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 | es_ES |
dc.description.references | Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446 | es_ES |
dc.description.references | Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 | es_ES |
dc.description.references | Boyer, J. S. (1982). Plant Productivity and Environment. Science, 218(4571), 443-448. doi:10.1126/science.218.4571.443 | es_ES |
dc.description.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 | es_ES |
dc.description.references | Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science, 3(11), 411-412. doi:10.1016/s1360-1385(98)01331-4 | es_ES |
dc.description.references | Cavalieri, A. J. (1983). Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia, 57(1-2), 20-24. doi:10.1007/bf00379556 | es_ES |
dc.description.references | Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007 | es_ES |
dc.description.references | Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 | es_ES |
dc.description.references | Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 | es_ES |
dc.description.references | Demiral, T., & Türkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161(10), 1089-1100. doi:10.1016/j.jplph.2004.03.009 | es_ES |
dc.description.references | Doddema, H., Saad Eddin, R., & Mahasneh, A. (1986). Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyteArthrocnemum fruticosum (L.) Moq. Plant and Soil, 92(2), 279-293. doi:10.1007/bf02372641 | es_ES |
dc.description.references | FEDOROFF, N. (2006). Redox Regulatory Mechanisms in Cellular Stress Responses. Annals of Botany, 98(2), 289-300. doi:10.1093/aob/mcl128 | es_ES |
dc.description.references | Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x | es_ES |
dc.description.references | Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513 | es_ES |
dc.description.references | Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 37(7), 604. doi:10.1071/fp09269 | es_ES |
dc.description.references | Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium. Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820 | es_ES |
dc.description.references | Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 | es_ES |
dc.description.references | Glenn, E. (1999). Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. doi:10.1016/s0735-2689(99)00388-3 | es_ES |
dc.description.references | Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789 | es_ES |
dc.description.references | Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073 | es_ES |
dc.description.references | HAUSER, F., & HORIE, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress. Plant, Cell & Environment, 33(4), 552-565. doi:10.1111/j.1365-3040.2009.02056.x | es_ES |
dc.description.references | Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 | es_ES |
dc.description.references | Horie, T., Hauser, F., & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 14(12), 660-668. doi:10.1016/j.tplants.2009.08.009 | es_ES |
dc.description.references | Katschnig, D., Broekman, R., & Rozema, J. (2013). Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environmental and Experimental Botany, 92, 32-42. doi:10.1016/j.envexpbot.2012.04.002 | es_ES |
dc.description.references | Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45(1), 73-84. doi:10.1006/jare.1999.0617 | es_ES |
dc.description.references | Koiwa, H., Bressan, R. A., & Hasegawa, P. M. (2006). Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany, 57(5), 1119-1128. doi:10.1093/jxb/erj093 | es_ES |
dc.description.references | Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460 | es_ES |
dc.description.references | Kronzucker, H. J., & Britto, D. T. (2010). Sodium transport in plants: a critical review. New Phytologist, 189(1), 54-81. doi:10.1111/j.1469-8137.2010.03540.x | es_ES |
dc.description.references | Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products, 31(1), 13-19. doi:10.1016/j.indcrop.2009.07.015 | es_ES |
dc.description.references | Li, Y. (2008). Kinetics of the antioxidant response to salinity in the halophyte <I>Limonium bicolour</I>. Plant, Soil and Environment, 54(No. 11), 493-497. doi:10.17221/434-pse | es_ES |
dc.description.references | Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x | es_ES |
dc.description.references | MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S., & MITTLER, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467. doi:10.1111/j.1365-3040.2009.02041.x | es_ES |
dc.description.references | Moghaieb, R. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166(5), 1345-1349. doi:10.1016/j.plantsci.2004.01.016 | es_ES |
dc.description.references | Mouri, C., Benhassaini, H., Bendimered, F. Z., & Belkhodja, M. (2012). Variation saisonnière de la teneur en proline et en sucres solubles chez l’oyat (Ammophila arenaria(L.) Link) provenant du milieu naturel de la côte ouest de l’Algérie. Acta Botanica Gallica, 159(1), 127-135. doi:10.1080/12538078.2012.673822 | es_ES |
dc.description.references | Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143 | es_ES |
dc.description.references | Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 | es_ES |
dc.description.references | Murakeözy, É. P., Smirnoff, N., Nagy, Z., & Tuba, Z. (2002). Seasonal accumulation pattern of pinitol and other carbohydrates in Limonium gmelini subsp. hungarica. Journal of Plant Physiology, 159(5), 485-490. doi:10.1078/0176-1617-00617 | es_ES |
dc.description.references | Murakeözy, É. P., Nagy, Z., Duhazé, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160(4), 395-401. doi:10.1078/0176-1617-00790 | es_ES |
dc.description.references | Nawaz, K., & Ashraf, M. (2010). Exogenous Application of Glycinebetaine Modulates Activities of Antioxidants in Maize Plants Subjected to Salt Stress. Journal of Agronomy and Crop Science, 196(1), 28-37. doi:10.1111/j.1439-037x.2009.00385.x | es_ES |
dc.description.references | Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 109(3), 735-742. doi:10.1104/pp.109.3.735 | es_ES |
dc.description.references | Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 | es_ES |
dc.description.references | Parida, A. K., Das, A. B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161(5), 531-542. doi:10.1078/0176-1617-01084 | es_ES |
dc.description.references | Popp, M., & Polania, J. (1989). Compatible solutes in different organs of mangrove trees. Annales des Sciences Forestières, 46(Supplement), 842s-844s. doi:10.1051/forest:198905art0185 | es_ES |
dc.description.references | Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., … Enrique Figueroa, M. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 128(1), 116-124. doi:10.1111/j.1399-3054.2006.00719.x | es_ES |
dc.description.references | RENGEL, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15(6), 625-632. doi:10.1111/j.1365-3040.1992.tb01004.x | es_ES |
dc.description.references | Rodríguez-Navarro, A., & Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany, 57(5), 1149-1160. doi:10.1093/jxb/erj068 | es_ES |
dc.description.references | Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.x | es_ES |
dc.description.references | SHORT, D. (1999). Salt Tolerance in the HalophyteHalosarcia pergranulatasubsp.pergranulata. Annals of Botany, 83(3), 207-213. doi:10.1006/anbo.1998.0812 | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | Tipirdamaz, R., Gagneul, D., Duhazé, C., Aïnouche, A., Monnier, C., Özkum, D., & Larher, F. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 57(1-2), 139-153. doi:10.1016/j.envexpbot.2005.05.007 | es_ES |
dc.description.references | Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2-9. doi:10.1016/j.envexpbot.2009.05.008 | es_ES |
dc.description.references | Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 | es_ES |
dc.description.references | Walker, D. J., Romero, P., de Hoyos, A., & Correal, E. (2008). Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environmental and Experimental Botany, 64(3), 217-224. doi:10.1016/j.envexpbot.2008.05.012 | es_ES |
dc.description.references | Watson, E. B., & Byrne, R. (2009). Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology, 205(1), 113-128. doi:10.1007/s11258-009-9602-7 | es_ES |
dc.description.references | Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x | es_ES |
dc.description.references | Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 | es_ES |
dc.description.references | Zhu, J.-K. (2000). Genetic Analysis of Plant Salt Tolerance Using Arabidopsis: Fig. 1. Plant Physiology, 124(3), 941-948. doi:10.1104/pp.124.3.941 | es_ES |
dc.description.references | Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 | es_ES |
dc.description.references | Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329 | es_ES |