Adrian-Romero, M., Wilson, S. J., Blunden, G., Yang, M.-H., Carabot-Cuervo, A., & Bashir, A. K. (1998). Betaines in coastal plants. Biochemical Systematics and Ecology, 26(5), 535-543. doi:10.1016/s0305-1978(98)00013-1
Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3
Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. doi:10.1007/s10535-009-0046-7
[+]
Adrian-Romero, M., Wilson, S. J., Blunden, G., Yang, M.-H., Carabot-Cuervo, A., & Bashir, A. K. (1998). Betaines in coastal plants. Biochemical Systematics and Ecology, 26(5), 535-543. doi:10.1016/s0305-1978(98)00013-1
Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3
Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. doi:10.1007/s10535-009-0046-7
Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2010). Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiologiae Plantarum, 33(4), 1261-1270. doi:10.1007/s11738-010-0656-x
Albert, A., Yenush, L., Gil-Mascarell, M. ., Rodriguez, P. ., Patel, S., Martı́nez-Ripoll, M., … Serrano, R. (2000). X-ray structure of yeast hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. Journal of Molecular Biology, 295(4), 927-938. doi:10.1006/jmbi.1999.3408
Albert, R., & Popp, M. (1977). Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia, 27(2), 157-170. doi:10.1007/bf00345820
Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701
Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006
Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060
Bazihizina, N., Barrett-Lennard, E. G., & Colmer, T. D. (2012). Plant growth and physiology under heterogeneous salinity. Plant and Soil, 354(1-2), 1-19. doi:10.1007/s11104-012-1193-8
Amor, N. B., Jimenez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2006). Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum, 126(3), 446-457. doi:10.1111/j.1399-3054.2006.00620.x
Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., … Abdelly, C. (2013). Physiological response of halophytes to multiple stresses. Functional Plant Biology, 40(9), 883. doi:10.1071/fp13074
Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1
Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446
Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017
Boyer, J. S. (1982). Plant Productivity and Environment. Science, 218(4571), 443-448. doi:10.1126/science.218.4571.443
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3
Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science, 3(11), 411-412. doi:10.1016/s1360-1385(98)01331-4
Cavalieri, A. J. (1983). Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia, 57(1-2), 20-24. doi:10.1007/bf00379556
Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007
Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351
Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003
Demiral, T., & Türkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161(10), 1089-1100. doi:10.1016/j.jplph.2004.03.009
Doddema, H., Saad Eddin, R., & Mahasneh, A. (1986). Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyteArthrocnemum fruticosum (L.) Moq. Plant and Soil, 92(2), 279-293. doi:10.1007/bf02372641
FEDOROFF, N. (2006). Redox Regulatory Mechanisms in Cellular Stress Responses. Annals of Botany, 98(2), 289-300. doi:10.1093/aob/mcl128
Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x
Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513
Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 37(7), 604. doi:10.1071/fp09269
Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium. Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820
Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359
Glenn, E. (1999). Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. doi:10.1016/s0735-2689(99)00388-3
Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789
Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073
HAUSER, F., & HORIE, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress. Plant, Cell & Environment, 33(4), 552-565. doi:10.1111/j.1365-3040.2009.02056.x
Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524
Horie, T., Hauser, F., & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 14(12), 660-668. doi:10.1016/j.tplants.2009.08.009
Katschnig, D., Broekman, R., & Rozema, J. (2013). Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environmental and Experimental Botany, 92, 32-42. doi:10.1016/j.envexpbot.2012.04.002
Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45(1), 73-84. doi:10.1006/jare.1999.0617
Koiwa, H., Bressan, R. A., & Hasegawa, P. M. (2006). Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany, 57(5), 1119-1128. doi:10.1093/jxb/erj093
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460
Kronzucker, H. J., & Britto, D. T. (2010). Sodium transport in plants: a critical review. New Phytologist, 189(1), 54-81. doi:10.1111/j.1469-8137.2010.03540.x
Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products, 31(1), 13-19. doi:10.1016/j.indcrop.2009.07.015
Li, Y. (2008). Kinetics of the antioxidant response to salinity in the halophyte <I>Limonium bicolour</I>. Plant, Soil and Environment, 54(No. 11), 493-497. doi:10.17221/434-pse
Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x
MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S., & MITTLER, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467. doi:10.1111/j.1365-3040.2009.02041.x
Moghaieb, R. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166(5), 1345-1349. doi:10.1016/j.plantsci.2004.01.016
Mouri, C., Benhassaini, H., Bendimered, F. Z., & Belkhodja, M. (2012). Variation saisonnière de la teneur en proline et en sucres solubles chez l’oyat (Ammophila arenaria(L.) Link) provenant du milieu naturel de la côte ouest de l’Algérie. Acta Botanica Gallica, 159(1), 127-135. doi:10.1080/12538078.2012.673822
Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143
Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911
Murakeözy, É. P., Smirnoff, N., Nagy, Z., & Tuba, Z. (2002). Seasonal accumulation pattern of pinitol and other carbohydrates in Limonium gmelini subsp. hungarica. Journal of Plant Physiology, 159(5), 485-490. doi:10.1078/0176-1617-00617
Murakeözy, É. P., Nagy, Z., Duhazé, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160(4), 395-401. doi:10.1078/0176-1617-00790
Nawaz, K., & Ashraf, M. (2010). Exogenous Application of Glycinebetaine Modulates Activities of Antioxidants in Maize Plants Subjected to Salt Stress. Journal of Agronomy and Crop Science, 196(1), 28-37. doi:10.1111/j.1439-037x.2009.00385.x
Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 109(3), 735-742. doi:10.1104/pp.109.3.735
Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389
Parida, A. K., Das, A. B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161(5), 531-542. doi:10.1078/0176-1617-01084
Popp, M., & Polania, J. (1989). Compatible solutes in different organs of mangrove trees. Annales des Sciences Forestières, 46(Supplement), 842s-844s. doi:10.1051/forest:198905art0185
Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., … Enrique Figueroa, M. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 128(1), 116-124. doi:10.1111/j.1399-3054.2006.00719.x
RENGEL, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15(6), 625-632. doi:10.1111/j.1365-3040.1992.tb01004.x
Rodríguez-Navarro, A., & Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany, 57(5), 1149-1160. doi:10.1093/jxb/erj068
Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.x
SHORT, D. (1999). Salt Tolerance in the HalophyteHalosarcia pergranulatasubsp.pergranulata. Annals of Botany, 83(3), 207-213. doi:10.1006/anbo.1998.0812
Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009
Tipirdamaz, R., Gagneul, D., Duhazé, C., Aïnouche, A., Monnier, C., Özkum, D., & Larher, F. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 57(1-2), 139-153. doi:10.1016/j.envexpbot.2005.05.007
Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2-9. doi:10.1016/j.envexpbot.2009.05.008
Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003
Walker, D. J., Romero, P., de Hoyos, A., & Correal, E. (2008). Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environmental and Experimental Botany, 64(3), 217-224. doi:10.1016/j.envexpbot.2008.05.012
Watson, E. B., & Byrne, R. (2009). Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology, 205(1), 113-128. doi:10.1007/s11258-009-9602-7
Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2
Zhu, J.-K. (2000). Genetic Analysis of Plant Salt Tolerance Using Arabidopsis: Fig. 1. Plant Physiology, 124(3), 941-948. doi:10.1104/pp.124.3.941
Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0
Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329
[-]