Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Franco, Raquel | es_ES |
dc.contributor.author | Sun, Junliang | es_ES |
dc.contributor.author | Sastre Navarro, German Ignacio | es_ES |
dc.contributor.author | Yun, Yifeng | es_ES |
dc.contributor.author | Zou, Xiaodong | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2016-04-26T15:16:05Z | |
dc.date.available | 2016-04-26T15:16:05Z | |
dc.date.issued | 2014-06-08 | |
dc.identifier.issn | 0080-4630 | |
dc.identifier.uri | http://hdl.handle.net/10251/62986 | |
dc.description.abstract | The combination of different experimental techniques, such as solid C-13 and H-1 magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Government through Consolider Ingenio 2010-Multicat, the 'Severo Ochoa Programme' (SEV 2012-0267), MAT2012-37160; UPV through PAID-06-11 (no. 1952); the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society, The | es_ES |
dc.relation.ispartof | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | zeolite | es_ES |
dc.subject | proton sponge | es_ES |
dc.subject | supra-molecular | es_ES |
dc.subject | organic structure-directing agent | es_ES |
dc.subject | catalysis | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1098/rspa.2014.0107 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-1952/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ES/SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Martínez Franco, R.; Sun, J.; Sastre Navarro, GI.; Yun, Y.; Zou, X.; Moliner Marin, M.; Corma Canós, A. (2014). Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences. 470:1-13. https://doi.org/10.1098/rspa.2014.0107 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1098/rspa.2014.0107 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 470 | es_ES |
dc.relation.senia | 278055 | es_ES |
dc.identifier.eissn | 1471-2946 | |
dc.identifier.pmid | 24910528 | es_ES |
dc.identifier.pmcid | PMC4042726 | en_EN |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Swedish Research Council | es_ES |
dc.contributor.funder | Swedish Governmental Agency for Innovation Systems | es_ES |
dc.description.references | Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 | es_ES |
dc.description.references | Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0 | es_ES |
dc.description.references | Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774f | es_ES |
dc.description.references | Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238 | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g | es_ES |
dc.description.references | Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 | es_ES |
dc.description.references | Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 | es_ES |
dc.description.references | Kubota, Y., Helmkamp, M. M., Zones, S. I., & Davis, M. E. (1996). Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Materials, 6(4), 213-229. doi:10.1016/0927-6513(96)00002-8 | es_ES |
dc.description.references | Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 | es_ES |
dc.description.references | Gómez-Hortigüela, L., López-Arbeloa, F., Corà, F., & Pérez-Pariente, J. (2008). Supramolecular Chemistry in the Structure Direction of Microporous Materials from Aromatic Structure-Directing Agents. Journal of the American Chemical Society, 130(40), 13274-13284. doi:10.1021/ja8023725 | es_ES |
dc.description.references | Gómez-Hortigüela, L., Hamad, S., López-Arbeloa, F., Pinar, A. B., Pérez-Pariente, J., & Corà, F. (2009). Molecular Insights into the Self-Aggregation of Aromatic Molecules in the Synthesis of Nanoporous Aluminophosphates: A Multilevel Approach. Journal of the American Chemical Society, 131(45), 16509-16524. doi:10.1021/ja906105x | es_ES |
dc.description.references | Staab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653 | es_ES |
dc.description.references | Leslie, M., & Gillan, N. J. (1985). The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. Journal of Physics C: Solid State Physics, 18(5), 973-982. doi:10.1088/0022-3719/18/5/005 | es_ES |
dc.description.references | Catlow, C. R. A., & Cormack, A. N. (1987). Computer modelling of silicates. International Reviews in Physical Chemistry, 6(3), 227-250. doi:10.1080/01442358709353406 | es_ES |
dc.description.references | Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h | es_ES |
dc.description.references | Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887 | es_ES |
dc.description.references | Kiselev, A. V., Lopatkin, A. A., & Shulga, A. A. (1985). Molecular statistical calculation of gas adsorption by silicalite. Zeolites, 5(4), 261-267. doi:10.1016/0144-2449(85)90098-3 | es_ES |
dc.description.references | Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1996). Structure and Stability of Silica Species in SAPO Molecular Sieves. The Journal of Physical Chemistry, 100(16), 6722-6730. doi:10.1021/jp953362f | es_ES |
dc.description.references | Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011 | es_ES |
dc.description.references | Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., & Hirao, K. (2004). A long-range-corrected time-dependent density functional theory. The Journal of Chemical Physics, 120(18), 8425-8433. doi:10.1063/1.1688752 | es_ES |
dc.description.references | Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096 | es_ES |
dc.description.references | Wozniak, K., He, H., Klinowski, J., Jones, W., & Barr, T. L. (1995). ESCA, Solid-State NMR, and X-ray Diffraction Monitor the Hydrogen Bonding in a Complex of 1,8-Bis(dimethylamino)naphthalene with 1,2-Dichloromaleic Acid. The Journal of Physical Chemistry, 99(40), 14667-14677. doi:10.1021/j100040a014 | es_ES |
dc.description.references | Rodriguez, I., Sastre, G., Corma, A., & Iborra, S. (1999). Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 183(1), 14-23. doi:10.1006/jcat.1998.2380 | es_ES |
dc.description.references | Wozniak, K., He, H., Klinowski, J., Barr, T. L., & Milart, P. (1996). ESCA and Solid-State NMR Studies of Ionic Complexes of 1,8-Bis(dimethylamino)naphthalene. The Journal of Physical Chemistry, 100(27), 11420-11426. doi:10.1021/jp9537320 | es_ES |
dc.description.references | Wo?naik, K., Krygowski, T. M., Pawlak, D., Kolodziejski, W., & Grech, E. (1997). Solid-state NMR and x-ray diffraction studies of ionic complex of 1,8-bis(dimethylamino)naphthalene (DMAN) with picrolonic acid. Journal of Physical Organic Chemistry, 10(11), 814-824. doi:10.1002/(sici)1099-1395(199711)10:11<814::aid-pca953>3.0.co;2-s | es_ES |