Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713
Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0
Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774f
[+]
Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713
Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0
Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774f
Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238
Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g
Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957
Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652
Kubota, Y., Helmkamp, M. M., Zones, S. I., & Davis, M. E. (1996). Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Materials, 6(4), 213-229. doi:10.1016/0927-6513(96)00002-8
Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909
Gómez-Hortigüela, L., López-Arbeloa, F., Corà, F., & Pérez-Pariente, J. (2008). Supramolecular Chemistry in the Structure Direction of Microporous Materials from Aromatic Structure-Directing Agents. Journal of the American Chemical Society, 130(40), 13274-13284. doi:10.1021/ja8023725
Gómez-Hortigüela, L., Hamad, S., López-Arbeloa, F., Pinar, A. B., Pérez-Pariente, J., & Corà, F. (2009). Molecular Insights into the Self-Aggregation of Aromatic Molecules in the Synthesis of Nanoporous Aluminophosphates: A Multilevel Approach. Journal of the American Chemical Society, 131(45), 16509-16524. doi:10.1021/ja906105x
Staab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653
Leslie, M., & Gillan, N. J. (1985). The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. Journal of Physics C: Solid State Physics, 18(5), 973-982. doi:10.1088/0022-3719/18/5/005
Catlow, C. R. A., & Cormack, A. N. (1987). Computer modelling of silicates. International Reviews in Physical Chemistry, 6(3), 227-250. doi:10.1080/01442358709353406
Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h
Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887
Kiselev, A. V., Lopatkin, A. A., & Shulga, A. A. (1985). Molecular statistical calculation of gas adsorption by silicalite. Zeolites, 5(4), 261-267. doi:10.1016/0144-2449(85)90098-3
Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1996). Structure and Stability of Silica Species in SAPO Molecular Sieves. The Journal of Physical Chemistry, 100(16), 6722-6730. doi:10.1021/jp953362f
Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011
Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., & Hirao, K. (2004). A long-range-corrected time-dependent density functional theory. The Journal of Chemical Physics, 120(18), 8425-8433. doi:10.1063/1.1688752
Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096
Wozniak, K., He, H., Klinowski, J., Jones, W., & Barr, T. L. (1995). ESCA, Solid-State NMR, and X-ray Diffraction Monitor the Hydrogen Bonding in a Complex of 1,8-Bis(dimethylamino)naphthalene with 1,2-Dichloromaleic Acid. The Journal of Physical Chemistry, 99(40), 14667-14677. doi:10.1021/j100040a014
Rodriguez, I., Sastre, G., Corma, A., & Iborra, S. (1999). Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 183(1), 14-23. doi:10.1006/jcat.1998.2380
Wozniak, K., He, H., Klinowski, J., Barr, T. L., & Milart, P. (1996). ESCA and Solid-State NMR Studies of Ionic Complexes of 1,8-Bis(dimethylamino)naphthalene. The Journal of Physical Chemistry, 100(27), 11420-11426. doi:10.1021/jp9537320
Wo?naik, K., Krygowski, T. M., Pawlak, D., Kolodziejski, W., & Grech, E. (1997). Solid-state NMR and x-ray diffraction studies of ionic complex of 1,8-bis(dimethylamino)naphthalene (DMAN) with picrolonic acid. Journal of Physical Organic Chemistry, 10(11), 814-824. doi:10.1002/(sici)1099-1395(199711)10:11<814::aid-pca953>3.0.co;2-s
[-]