- -

Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benavente Martínez, Rut es_ES
dc.contributor.author Salvador Moya, Mª Dolores es_ES
dc.contributor.author Peñaranda Foix, Felipe Laureano es_ES
dc.contributor.author García-Moreno, Olga es_ES
dc.contributor.author Torrecillas, Ramón es_ES
dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.date.accessioned 2016-04-27T11:36:48Z
dc.date.available 2016-04-27T11:36:48Z
dc.date.issued 2014
dc.identifier.issn 1662-0356
dc.identifier.uri http://hdl.handle.net/10251/63045
dc.description.abstract [EN] Microwave sintering has emerged in recent years as a new, fast, cheap and green technology for sintering a variety of materials. The main advantages of microwave heating can be summarized as follow: reduced processing times, energy costs and environmental benefits. Nevertheless, understanding how this specific heating drives to obtain ceramic materials with a combination of unique, structural and functional properties is the big challenge. The present work shows the different and improved properties achieved with β-eucryptite nanocomposite ceramic materials by microwave heating compared with the conventional method. Microcracking evolution in addition to the microstructure of the sintered materials along the several thermal cycles has been studied. Mechanical properties changes observed can be related to this process. Thus, the microwave technique is a promising tool for sintering new materials by controlling the composition of the phases, chemical reactivity and nanostructure, using up to 70% less energy in the whole sintering process than conventional heating. This technique ecomes part of the new and innovative technologies "eco-green". es_ES
dc.description.sponsorship The authors would like to thank the financial support received of UPV under project SP20120677 and Ministerio de Economía y Competitividad (MINECO) and co-funded by ERDF (European Regional Development Funds) through the project (TEC2012-37532-C02-01). A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for a Juan de la Cierva contract (JCI-2011-10498) and SCSIE of the University of Valencia.
dc.language Inglés es_ES
dc.publisher Scientific.Net
dc.relation.ispartof Advances in Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Microwave sintering es_ES
dc.subject β-eucryptite es_ES
dc.subject Mechanical properties es_ES
dc.subject Thermal fatigue es_ES
dc.subject Microcracking es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso
dc.identifier.doi 10.4028/www.scientific.net/AST.88.43
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120677/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-37532-C02-01/ES/DISPOSITIVOS DE DIELECTROMETRIA DINAMICA DE MICROONDAS DE POTENCIA PARA SINTERIZADO DE MATERIALES DE ALTO RENDIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-10498/ES/JCI-2011-10498/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Benavente Martínez, R.; Salvador Moya, MD.; Peñaranda Foix, FL.; García-Moreno, O.; Torrecillas, R.; Borrell Tomás, MA. (2014). Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials. Advances in Science and Technology. 88:43-48. https://doi.org/10.4028/www.scientific.net/AST.88.43 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13 th International Ceramic Congress (CIMTEC 2014)
dc.relation.conferencedate June 8-19, 2014
dc.relation.conferenceplace Montecatini Terme, Italy
dc.relation.publisherversion http://dx.doi.org/10.4028/www.scientific.net/AST.88.43 es_ES
dc.description.upvformatpinicio 43 es_ES
dc.description.upvformatpfin 48 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.relation.senia 276152 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references W. Höland, G. Beall, Glass Ceramic Technology, American Ceramic Society, Westerville, OH, (2002). es_ES
dc.description.references T. Ogiwara, Y. Noda, K. Shoji, O. Kimura, Low-Temperature sintering of high-strength β-eucryptite ceramics with low thermal expansion using Li2O-GeO2 as a sintering additive, J. Amer. Ceram. Soc. 94 (2011) 1427-1433. es_ES
dc.description.references A. Shyam, J. Muth, E. Lara-Curzio, Elastic properties of b-eucryptite in the glassy and microcracked crystalline states, Acta Mater. 60 (2012) 5867-5876. es_ES
dc.description.references O. García-Moreno, A. Fernández, S. Khainakov, R. Torrecillas, Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures, Scripta Mater. 63 (2010) 170-173. es_ES
dc.description.references P.J. Plaza-Gonzalez, A.J. Canos, J.M. Catala-Civera, J.D. Gutierrez-Cano, Complex impedance measurement system around 2. 45 GHz in a waveguide portable system, Proceedings of the 13th International Conference on Microwave and RF Heating. Toulouse 447-450 (2011). es_ES
dc.description.references W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 19 (1992) 1564-1583. es_ES
dc.description.references R. Benavente, A. Borrell, M.D. Salvador, O. Garcia-Moreno, F.L. Peñaranda-Foix, J.M. Catala-Civera, Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering, Ceram. Inter. 40 (2014) 93-941. es_ES
dc.description.references R. L. Coble, Sintering crystalline solid I. Intermediate and final state diffusion models, J. Appl. Phys. 32 (1961) 787-793. es_ES
dc.description.references A. Pelletant, H. Reveron, J. Chêvalier, G. Fantozzi, L. Blanchard, F. Guinot, F. Falzon, Grain size dependence of pure β-eucryptite thermal expansion coefficient, Materials Letters, 66 (2012) 68-71. es_ES
dc.description.references G. Bruno, V.O. Garlea, J. Muth, A.M. Efremov, T.R. Watkins, A. Shyam, Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model, Acta Mater. 60 (2012) 4982-4996. es_ES
dc.description.references S. Ramalingam, I.E. Reimanis, Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods, J. Amer. Ceram. Soc. 95 (2012) 2939-2943. es_ES
dc.description.references J.S. Moya, A.G. Verduch, M. Hortal, Thermal expansion of β-eucryptite solid solution, Trans. Brit. Ceram. Soc. 76 (1974) 177-178. es_ES
dc.description.references I.E. Reimanis, C. Seick, K. Fitzpatrick, E.R. Fuller and S. Landin, Spontaneous Ejecta from β-Eucryptite Composites, J. Amer. Ceram. Soc. 90 (2007) 2497-2501. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem