- -

Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials

Mostrar el registro completo del ítem

Benavente Martínez, R.; Salvador Moya, MD.; Peñaranda Foix, FL.; García-Moreno, O.; Torrecillas, R.; Borrell Tomás, MA. (2014). Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials. Advances in Science and Technology. 88:43-48. https://doi.org/10.4028/www.scientific.net/AST.88.43

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63045

Ficheros en el ítem

Metadatos del ítem

Título: Microwave technique: An innovated method for sintering beta-eucryptite ceramic materials
Autor: Benavente Martínez, Rut Salvador Moya, Mª Dolores Peñaranda Foix, Felipe Laureano García-Moreno, Olga Torrecillas, Ramón Borrell Tomás, María Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Microwave sintering has emerged in recent years as a new, fast, cheap and green technology for sintering a variety of materials. The main advantages of microwave heating can be summarized as follow: reduced processing ...[+]
Palabras clave: Microwave sintering , β-eucryptite , Mechanical properties , Thermal fatigue , Microcracking
Derechos de uso: Reserva de todos los derechos
Fuente:
Advances in Science and Technology. (issn: 1662-0356 )
DOI: 10.4028/www.scientific.net/AST.88.43
Editorial:
Scientific.Net
Versión del editor: http://dx.doi.org/10.4028/www.scientific.net/AST.88.43
Título del congreso: 13 th International Ceramic Congress (CIMTEC 2014)
Lugar del congreso: Montecatini Terme, Italy
Fecha congreso: June 8-19, 2014
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//SP20120677/
info:eu-repo/grantAgreement/MINECO//TEC2012-37532-C02-01/ES/DISPOSITIVOS DE DIELECTROMETRIA DINAMICA DE MICROONDAS DE POTENCIA PARA SINTERIZADO DE MATERIALES DE ALTO RENDIMIENTO/
info:eu-repo/grantAgreement/MICINN//JCI-2011-10498/ES/JCI-2011-10498/
Agradecimientos:
The authors would like to thank the financial support received of UPV under project SP20120677 and Ministerio de Economía y Competitividad (MINECO) and co-funded by ERDF (European Regional Development Funds) through the ...[+]
Tipo: Artículo Comunicación en congreso

References

W. Höland, G. Beall, Glass Ceramic Technology, American Ceramic Society, Westerville, OH, (2002).

T. Ogiwara, Y. Noda, K. Shoji, O. Kimura, Low-Temperature sintering of high-strength β-eucryptite ceramics with low thermal expansion using Li2O-GeO2 as a sintering additive, J. Amer. Ceram. Soc. 94 (2011) 1427-1433.

A. Shyam, J. Muth, E. Lara-Curzio, Elastic properties of b-eucryptite in the glassy and microcracked crystalline states, Acta Mater. 60 (2012) 5867-5876. [+]
W. Höland, G. Beall, Glass Ceramic Technology, American Ceramic Society, Westerville, OH, (2002).

T. Ogiwara, Y. Noda, K. Shoji, O. Kimura, Low-Temperature sintering of high-strength β-eucryptite ceramics with low thermal expansion using Li2O-GeO2 as a sintering additive, J. Amer. Ceram. Soc. 94 (2011) 1427-1433.

A. Shyam, J. Muth, E. Lara-Curzio, Elastic properties of b-eucryptite in the glassy and microcracked crystalline states, Acta Mater. 60 (2012) 5867-5876.

O. García-Moreno, A. Fernández, S. Khainakov, R. Torrecillas, Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures, Scripta Mater. 63 (2010) 170-173.

P.J. Plaza-Gonzalez, A.J. Canos, J.M. Catala-Civera, J.D. Gutierrez-Cano, Complex impedance measurement system around 2. 45 GHz in a waveguide portable system, Proceedings of the 13th International Conference on Microwave and RF Heating. Toulouse 447-450 (2011).

W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 19 (1992) 1564-1583.

R. Benavente, A. Borrell, M.D. Salvador, O. Garcia-Moreno, F.L. Peñaranda-Foix, J.M. Catala-Civera, Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering, Ceram. Inter. 40 (2014) 93-941.

R. L. Coble, Sintering crystalline solid I. Intermediate and final state diffusion models, J. Appl. Phys. 32 (1961) 787-793.

A. Pelletant, H. Reveron, J. Chêvalier, G. Fantozzi, L. Blanchard, F. Guinot, F. Falzon, Grain size dependence of pure β-eucryptite thermal expansion coefficient, Materials Letters, 66 (2012) 68-71.

G. Bruno, V.O. Garlea, J. Muth, A.M. Efremov, T.R. Watkins, A. Shyam, Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model, Acta Mater. 60 (2012) 4982-4996.

S. Ramalingam, I.E. Reimanis, Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods, J. Amer. Ceram. Soc. 95 (2012) 2939-2943.

J.S. Moya, A.G. Verduch, M. Hortal, Thermal expansion of β-eucryptite solid solution, Trans. Brit. Ceram. Soc. 76 (1974) 177-178.

I.E. Reimanis, C. Seick, K. Fitzpatrick, E.R. Fuller and S. Landin, Spontaneous Ejecta from β-Eucryptite Composites, J. Amer. Ceram. Soc. 90 (2007) 2497-2501.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem