- -

Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants

Show full item record

Plazas Ávila, MDLO.; Prohens Tomás, J.; Cuñat, A.; Vilanova Navarro, S.; Gramazio, P.; Herraiz García, FJ.; Andújar Pérez, I. (2014). Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. International Journal of Molecular Sciences. 15(10):17221-17241. https://doi.org/10.3390/ijms151017221

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63092

Files in this item

Item Metadata

Title: Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants
Author: Plazas Ávila, María de la O Prohens Tomás, Jaime Cuñat, A.M. Vilanova Navarro, Santiago Gramazio, Pietro Herraiz García, Francisco Javier Andújar Pérez, Isabel
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological ...[+]
Subjects: Solanum aethiopicum , Solanum macrocarpon , Phenolic acids , Chlorogenic acid , Cultivar groups , Diversity , Nitric oxide , Bioactive properties , Breeding
Copyrigths: Reconocimiento (by)
Source:
International Journal of Molecular Sciences. (issn: 1422-0067 )
DOI: 10.3390/ijms151017221
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/ijms151017221
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2012-34213/ES/NUEVAS ESTRATEGIAS PARA LA MEJORA DE LA CALIDAD NUTRACEUTICA DE LA BERENJENA/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2014%2F191/
Thanks:
This research has been partially funded by Ministerio de Economia y Competitividad and FEDER (Grant AGL2012-34213) and by Conselleria d'Educacio i Esport de la Generalitat Valenciana (Grant ACOMP/2014/191). Pietro Gramazio ...[+]
Type: Artículo

References

PLAZAS, M., ANDÚJAR, I., VILANOVA, S., HURTADO, M., GRAMAZIO, P., HERRAIZ, F. J., & PROHENS, J. (2013). Breeding for Chlorogenic Acid Content in Eggplant: Interest and Prospects. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 26. doi:10.15835/nbha4119036

Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. doi:10.1016/j.mrfmmm.2005.03.023

Fresco, P., Borges, F., Diniz, C., & Marques, M. P. M. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 26(6), 747-766. doi:10.1002/med.20060 [+]
PLAZAS, M., ANDÚJAR, I., VILANOVA, S., HURTADO, M., GRAMAZIO, P., HERRAIZ, F. J., & PROHENS, J. (2013). Breeding for Chlorogenic Acid Content in Eggplant: Interest and Prospects. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 26. doi:10.15835/nbha4119036

Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. doi:10.1016/j.mrfmmm.2005.03.023

Fresco, P., Borges, F., Diniz, C., & Marques, M. P. M. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 26(6), 747-766. doi:10.1002/med.20060

Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313-7352. doi:10.3390/molecules15107313

Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., … Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1-2), 136-138. doi:10.1016/j.ijpharm.2010.09.035

Surh, Y.-J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768-780. doi:10.1038/nrc1189

VIRGILI, F., & MARINO, M. (2008). Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity. Free Radical Biology and Medicine, 45(9), 1205-1216. doi:10.1016/j.freeradbiomed.2008.08.001

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. doi:10.1016/0891-5849(95)02227-9

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. doi:10.1093/ajcn/79.5.727

Alarcón-Flores, M. I., Romero-González, R., Martínez Vidal, J. L., Egea González, F. J., & Garrido Frenich, A. (2014). Monitoring of phytochemicals in fresh and fresh-cut vegetables: A comparison. Food Chemistry, 142, 392-399. doi:10.1016/j.foodchem.2013.07.065

Suzuki, A., Yamamoto, N., Jokura, H., Yamamoto, M., Fujii, A., Tokimitsu, I., & Saito, I. (2006). Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. Journal of Hypertension, 24(6), 1065-1073. doi:10.1097/01.hjh.0000226196.67052.c0

Cho, A.-S., Jeon, S.-M., Kim, M.-J., Yeo, J., Seo, K.-I., Choi, M.-S., & Lee, M.-K. (2010). Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology, 48(3), 937-943. doi:10.1016/j.fct.2010.01.003

Ahn, E. H., Kim, D. W., Shin, M. J., Kwon, S. W., Kim, Y. N., Kim, D.-S., … Choi, S. Y. (2011). Chlorogenic Acid Improves Neuroprotective Effect of PEP-1-Ribosomal Protein S3 Against Ischemic Insult. Experimental Neurobiology, 20(4), 169. doi:10.5607/en.2011.20.4.169

Burgos-Morón, E., Calderón-Montaño, J. M., Orta, M. L., Pastor, N., Pérez-Guerrero, C., Austin, C., … López-Lázaro, M. (2012). The Coffee Constituent Chlorogenic Acid Induces Cellular DNA Damage and Formation of Topoisomerase I– and II–DNA Complexes in Cells. Journal of Agricultural and Food Chemistry, 60(30), 7384-7391. doi:10.1021/jf300999e

COMAN, C., RUGINA, O. D., & SOCACIU, C. (2012). Plants and Natural Compounds with Antidiabetic Action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. doi:10.15835/nbha4017205

Zhao, Y., Wang, J., Ballevre, O., Luo, H., & Zhang, W. (2011). Antihypertensive effects and mechanisms of chlorogenic acids. Hypertension Research, 35(4), 370-374. doi:10.1038/hr.2011.195

Dos Santos, M. D., Almeida, M. C., Lopes, N. P., & de Souza, G. E. P. (2006). Evaluation of the Anti-inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biological & Pharmaceutical Bulletin, 29(11), 2236-2240. doi:10.1248/bpb.29.2236

Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704

Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongenaL.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250b

Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638

Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017

Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15

Bukenya, Z. R., & Carasco, J. F. (1994). Biosystematic Study of Solanum Macrocarpon—S. Dasyphyllum Complex in Uganda and Relations with Solanum Linnaeanum. East African Agricultural and Forestry Journal, 59(3), 187-204. doi:10.1080/00128325.1994.11663195

Polignano, G., Uggenti, P., Bisignano, V., & Gatta, C. D. (2009). Genetic divergence analysis in eggplant (Solanum melongena L.) and allied species. Genetic Resources and Crop Evolution, 57(2), 171-181. doi:10.1007/s10722-009-9459-6

Plazas, M., Andújar, I., Vilanova, S., Gramazio, P., Herraiz, F. J., & Prohens, J. (2014). Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00318

Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x

Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Lo Scalzo, R. (2010). Characterization of Health-Related Compounds in Eggplant (Solanum melongenaL.) Lines Derived from Introgression of Allied Species. Journal of Agricultural and Food Chemistry, 58(13), 7597-7603. doi:10.1021/jf101004z

Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant Capacity of Tea and Common Vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. doi:10.1021/jf9602535

San José, R., Sánchez-Mata, M.-C., Cámara, M., & Prohens, J. (2014). Eggplant fruit composition as affected by the cultivation environment and genetic constitution. Journal of the Science of Food and Agriculture, 94(13), 2774-2784. doi:10.1002/jsfa.6623

Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L., & Lee, T.-C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19(6-7), 594-600. doi:10.1016/j.jfca.2006.03.001

Luthria, D. L., & Mukhopadhyay, S. (2006). Influence of Sample Preparation on Assay of Phenolic Acids from Eggplant. Journal of Agricultural and Food Chemistry, 54(1), 41-47. doi:10.1021/jf0522457

Mennella, G., Lo Scalzo, R., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Rotino, G. L. (2012). Chemical and Bioactive Quality Traits During Fruit Ripening in Eggplant (S. melongenaL.) and Allied Species. Journal of Agricultural and Food Chemistry, 60(47), 11821-11831. doi:10.1021/jf3037424

García-Salas, P., Gómez-Caravaca, A. M., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2014). Identification and quantification of phenolic compounds in diverse cultivars of eggplant grown in different seasons by high-performance liquid chromatography coupled to diode array detector and electrospray-quadrupole-time of flight-mass spectrometry. Food Research International, 57, 114-122. doi:10.1016/j.foodres.2014.01.032

Raigón, M. D., Prohens, J., Muñoz-Falcón, J. E., & Nuez, F. (2008). Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. Journal of Food Composition and Analysis, 21(5), 370-376. doi:10.1016/j.jfca.2008.03.006

M. Perez-de-Castro, A., Vilanova, S., Canizares, J., Pascual, L., M. Blanca, J., J. Diez, M., … Pico, B. (2012). Application of Genomic Tools in Plant Breeding. Current Genomics, 13(3), 179-195. doi:10.2174/138920212800543084

Plazas, M., López-Gresa, M. P., Vilanova, S., Torres, C., Hurtado, M., Gramazio, P., … Prohens, J. (2013). Diversity and Relationships in Key Traits for Functional and Apparent Quality in a Collection of Eggplant: Fruit Phenolics Content, Antioxidant Activity, Polyphenol Oxidase Activity, and Browning. Journal of Agricultural and Food Chemistry, 61(37), 8871-8879. doi:10.1021/jf402429k

Luthria, D. L. (2012). A simplified UV spectral scan method for the estimation of phenolic acids and antioxidant capacity in eggplant pulp extracts. Journal of Functional Foods, 4(1), 238-242. doi:10.1016/j.jff.2011.11.002

Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., & Walker, R. B. (2010). Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu Reagent. Journal of Agricultural and Food Chemistry, 58(14), 8139-8144. doi:10.1021/jf1005935

Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990. doi:10.1039/c3ay41125g

Wang, J., & Mazza, G. (2002). Inhibitory Effects of Anthocyanins and Other Phenolic Compounds on Nitric Oxide Production in LPS/IFN-γ-Activated RAW 264.7 Macrophages. Journal of Agricultural and Food Chemistry, 50(4), 850-857. doi:10.1021/jf010976a

Sánchez-Mata, M.-C., Yokoyama, W. E., Hong, Y.-J., & Prohens, J. (2010). α-Solasonine and α-Solamargine Contents of Gboma (Solanum macrocarpon L.) and Scarlet (Solanum aethiopicum L.) Eggplants. Journal of Agricultural and Food Chemistry, 58(9), 5502-5508. doi:10.1021/jf100709g

Hwang, S. J., Kim, Y.-W., Park, Y., Lee, H.-J., & Kim, K.-W. (2013). Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research, 63(1), 81-90. doi:10.1007/s00011-013-0674-4

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. doi:10.1021/jf0502698

Helmja, K., Vaher, M., Püssa, T., Raudsepp, P., & Kaljurand, M. (2008). Evaluation of antioxidative capability of the tomato (Solanum lycopersicum)skin constituents by capillary electrophoresis and high-performance liquid chromatography. ELECTROPHORESIS, 29(19), 3980-3988. doi:10.1002/elps.200800012

Grisham, M. B., Johnson, G. G., & Lancaster, J. R. (1996). Quantitation of nitrate and nitrite in extracellular fluids. Nitric Oxide Part A: Sources and Detection of NO; NO Synthase, 237-246. doi:10.1016/s0076-6879(96)68026-4

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record