- -

Robust estimation of Ackerman angles for front-axle steering vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust estimation of Ackerman angles for front-axle steering vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sáiz Rubio, Verónica es_ES
dc.contributor.author Rovira Más, Francisco es_ES
dc.contributor.author CHATTERJEE, ISHANI es_ES
dc.contributor.author Molina Hidalgo, Jose Mª es_ES
dc.date.accessioned 2016-04-28T10:58:08Z
dc.date.available 2016-04-28T10:58:08Z
dc.date.issued 2013
dc.identifier.issn 1927-6974
dc.identifier.uri http://hdl.handle.net/10251/63099
dc.description.abstract The multiple benefits of automating steering in agricultural vehicles have resulted in various autoguidance systems commercially available, most of them relying on satellite-based positioning. However, the fact that farm equipment is typically oversized, heavy, and highly powered poses serious challenges to automation in terms of safety and reliability. The objective of this research is to improve the reliability of front-wheel feedback signals as a preliminary stage in the development of stable steering control systems. To do so, the angle turned by each front wheel of a conventional tractor was independently measured by an optical encoder and fused to generate the Ackerman feedback angle. The proposed fusion algorithm analyzes the consistency of each signal with time and checks the coherence between left and right front wheels according to the vehicle steering mechanism. Field experiments demonstrated the benefits of using redundant sensors coupled through logic algorithms for estimating Ackerman angles as the harsh conditions of off-road environments often resulted in the unreliable performance of electronic devices. es_ES
dc.language Inglés es_ES
dc.publisher Sciedu Press es_ES
dc.relation.ispartof Artificial Intelligence Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Intelligent vehicles es_ES
dc.subject Agricultural robotics es_ES
dc.subject Sensor fusion es_ES
dc.subject Wheel encoders es_ES
dc.subject Auto-steering es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Robust estimation of Ackerman angles for front-axle steering vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5430/air.v2n2p18
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Sáiz Rubio, V.; Rovira Más, F.; Chatterjee, I.; Molina Hidalgo, JM. (2013). Robust estimation of Ackerman angles for front-axle steering vehicles. Artificial Intelligence Research. 2(2):18-28. doi:10.5430/air.v2n2p18 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5430/air.v2n2p18 es_ES
dc.description.upvformatpinicio 18 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 258110 es_ES
dc.identifier.eissn 1927-6982


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem