Mostrar el registro sencillo del ítem
dc.contributor.author | Corral Martínez, Patricia | es_ES |
dc.contributor.author | Parra Vega, Verónica | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.date.accessioned | 2016-04-28T12:04:52Z | |
dc.date.available | 2016-04-28T12:04:52Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0022-0957 | |
dc.identifier.uri | http://hdl.handle.net/10251/63109 | |
dc.description.abstract | [EN] Induction of embryogenesis from isolated microspore cultures is a complex experimental system where microspores undergo dramatic changes in developmental fate. After ~40 years of application of electron microscopy to the study of the ultrastructural changes undergone by the induced microspore, there is still room for new discoveries. In this work, high pressure freezing and freeze substitution (HPF/FS), the best procedures known to date for ultrastructural preservation, were used to process Brassica napus microspore cultures covering all the stages of microspore embryogenesis. Analysis of these cultures by electron microscopy revealed massive processes of autophagy exclusively in embryogenic microspores, but not in other microspore-derived structures also present in cultures. However, a significant part of the autophagosomal cargo was not recycled. Instead, it was transported out of the cell, producing numerous deposits of extracytoplasmic fibrillar and membranous material. It was shown that commitment of microspores to embryogenesis is associated with both massive autophagy and excretion of the removed material. It is hypothesized that autophagy would be related to the need for a profound cytoplasmic cleaning, and excretion would be a mechanism to avoid excessive growth of the vacuolar system. Together, the results also demonstrate that the application of HPF/FS to the study of the androgenic switch is the best option currently available to identify the complex and dramatic ultrastructural changes undergone by the induced microspore. In addition, they provide significant insights to understand the cellular basis of induction of microspore embryogenesis, and open a new door for the investigation of this intriguing developmental pathway. | es_ES |
dc.description.sponsorship | We especially thank Professor L. Andrew Staehelin for his kindness, knowledge, friendship, and help during the stay of JMSS at his lab at the University of Colorado. We also want to express our thanks to Tom Giddings from the MCDB Electron Microscopy Facility, to the staff of the EBIO greenhouses, both at University of Colorado, to the staff of the Electron Microscopy Service of Universitat Politecnica de Valencia, and to Dr Kim Boutilier for her help during the stay of VPV at her lab. This work was supported by the following grants to JMSS: AGL2006-06678 and AGL2010-17895 from the Spanish MICINN, and BEST/2008/154 and ACOMP/2012/168 from Generalitat Valenciana. | |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP): Policy B - Oxford Open Option A | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Androgenesis | es_ES |
dc.subject | Cryomethods | es_ES |
dc.subject | Doubled haploids | es_ES |
dc.subject | Electron microscopy | es_ES |
dc.subject | Haploids | es_ES |
dc.subject | Microspore embryogenesis | es_ES |
dc.subject | Rapeseed | es_ES |
dc.subject | Ultrastructure | es_ES |
dc.subject | Electron Microscopy Service of the UPV | |
dc.subject.classification | GENETICA | es_ES |
dc.title | Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/ert151 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2006-06678/ES/OBTENCION DE LINEAS DOBLE HAPLOIDES EN SOLANACEAS DE ELEVADO INTERES AGRONOMICO: ANALISIS DE AGENTES INDUCTORES Y MECANISMOS CELULARES IMPLICADOS EN LA INDUCCION EMBRIOGENICA EN TOMATE Y BERENJENA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//BEST%2F2008%2F154/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F168/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Corral Martínez, P.; Parra Vega, V.; Seguí-Simarro, JM. (2013). Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. Journal of Experimental Botany. 64(10):3061-3075. https://doi.org/10.1093/jxb/ert151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1093/jxb/ert151 | es_ES |
dc.description.upvformatpinicio | 3061 | es_ES |
dc.description.upvformatpfin | 3075 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 64 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 253923 | es_ES |
dc.identifier.pmid | 23761486 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., … Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133(6), 1251-1263. doi:10.1083/jcb.133.6.1251 | es_ES |
dc.description.references | Bassham, D. C. (2007). Plant autophagy—more than a starvation response. Current Opinion in Plant Biology, 10(6), 587-593. doi:10.1016/j.pbi.2007.06.006 | es_ES |
dc.description.references | Bassham, D. C. (2009). Function and regulation of macroautophagy in plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9), 1397-1403. doi:10.1016/j.bbamcr.2009.01.001 | es_ES |
dc.description.references | Chung, T. (2011). See How I Eat My Greens—Autophagy in Plant Cells. Journal of Plant Biology, 54(6), 339-350. doi:10.1007/s12374-011-9176-5 | es_ES |
dc.description.references | Contento, A. L., Xiong, Y., & Bassham, D. C. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. The Plant Journal, 42(4), 598-608. doi:10.1111/j.1365-313x.2005.02396.x | es_ES |
dc.description.references | Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. doi:10.1111/j.1467-7652.2009.00498.x | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 352-361. doi:10.1093/jxb/25.2.352 | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 363-373. doi:10.1093/jxb/25.2.363 | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1975). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 26(2), 240-252. doi:10.1093/jxb/26.2.240 | es_ES |
dc.description.references | Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375. doi:10.1016/j.tplants.2007.06.007 | es_ES |
dc.description.references | Germanà, M. A. (2010). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 283-300. doi:10.1007/s11240-010-9852-z | es_ES |
dc.description.references | Gilkey, J. C., & Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Journal of Electron Microscopy Technique, 3(2), 177-210. doi:10.1002/jemt.1060030206 | es_ES |
dc.description.references | Gonz�lez-Melendi, P., Testillano, P. S., Ahmadian, P., Fad�n, B., Vicente, O., & Risue�o, M. C. (1995). In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis inCapsicum. Protoplasma, 187(1-4), 60-71. doi:10.1007/bf01280233 | es_ES |
dc.description.references | Hause, G., Hause, B., & Lammeren, A. A. M. V. (1992). Microtubular and actin filament configurations during microspore and pollen development in Brassica napus cv. Topas. Canadian Journal of Botany, 70(7), 1369-1376. doi:10.1139/b92-172 | es_ES |
dc.description.references | Hosp, J., de Maraschin, S. F., Touraev, A., & Boutilier, K. (2006). Functional genomics of microspore embryogenesis. Euphytica, 158(3), 275-285. doi:10.1007/s10681-006-9238-9 | es_ES |
dc.description.references | Kasha, K. J. (s. f.). Chromosome Doubling and Recovery of Doubled Haploid Plants. Biotechnology in Agriculture and Forestry, 123-152. doi:10.1007/3-540-26889-8_7 | es_ES |
dc.description.references | Lee, R. M. K. W., McKenzie, R., Kobayashi, K., Garfield, R. E., Forrest, J. B., & Daniel, E. E. (1982). Effects of glutaraldehyde fixative osmolarities on smooth muscle cell volume, and osmotic reactivity of the cells after fixation. Journal of Microscopy, 125(1), 77-88. doi:10.1111/j.1365-2818.1982.tb00324.x | es_ES |
dc.description.references | Li, F., & Vierstra, R. D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 17(9), 526-537. doi:10.1016/j.tplants.2012.05.006 | es_ES |
dc.description.references | Lichter, R. (1982). Induction of Haploid Plants From Isolated Pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105(5), 427-434. doi:10.1016/s0044-328x(82)80040-8 | es_ES |
dc.description.references | Liu, Y., & Bassham, D. C. (2012). Autophagy: Pathways for Self-Eating in Plant Cells. Annual Review of Plant Biology, 63(1), 215-237. doi:10.1146/annurev-arplant-042811-105441 | es_ES |
dc.description.references | Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., & Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 98(1), 53-67. doi:10.1042/bc20040516 | es_ES |
dc.description.references | Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis in Brassica napus. Plant Physiology, 144(1), 134-154. doi:10.1104/pp.106.092932 | es_ES |
dc.description.references | Maraschin, S. de F., Caspers, M., Potokina, E., Wulfert, F., Graner, A., Spaink, H. P., & Wang, M. (2006). cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum, 127(4), 535-550. doi:10.1111/j.1399-3054.2006.00673.x | es_ES |
dc.description.references | Maraschin, S. F., de Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. doi:10.1093/jxb/eri190 | es_ES |
dc.description.references | Otegui, M. S., Noh, Y.-S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal, 41(6), 831-844. doi:10.1111/j.1365-313x.2005.02346.x | es_ES |
dc.description.references | Rashid, A., Siddiqui, A. W., & Reinert, J. (1982). Subcellular aspects of origin and structure of pollen embryos ofNicotiana. Protoplasma, 113(3), 202-208. doi:10.1007/bf01280908 | es_ES |
dc.description.references | Reyes, F. C., Chung, T., Holding, D., Jung, R., Vierstra, R., & Otegui, M. S. (2011). Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. The Plant Cell, 23(2), 769-784. doi:10.1105/tpc.110.082156 | es_ES |
dc.description.references | Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., … Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons ofArabidopsis. The Plant Journal, 29(3), 245-255. doi:10.1046/j.0960-7412.2001.01189.x | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2010). Androgenesis Revisited. The Botanical Review, 76(3), 377-404. doi:10.1007/s12229-010-9056-6 | es_ES |
dc.description.references | Seguí-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiologia Plantarum, 134(1), 1-12. doi:10.1111/j.1399-3054.2008.01113.x | es_ES |
dc.description.references | Seguí-Simarro, J. M., & Nuez, F. (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenetic and Genome Research, 120(3-4), 358-369. doi:10.1159/000121085 | es_ES |
dc.description.references | Seguí-Simarro, J. M., & Staehelin, L. A. (2005). Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: A quantitative and spatial analysis. Planta, 223(2), 223-236. doi:10.1007/s00425-005-0082-2 | es_ES |
dc.description.references | Seguı́-Simarro, J. ., Testillano, P. ., & Risueño, M. . (2003). Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. Journal of Structural Biology, 142(3), 379-391. doi:10.1016/s1047-8477(03)00067-4 | es_ES |
dc.description.references | Shariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534. doi:10.1111/j.1399-3054.2006.00675.x | es_ES |
dc.description.references | Simmonds, D. H., & Keller, W. A. (1999). Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta, 208(3), 383-391. doi:10.1007/s004250050573 | es_ES |
dc.description.references | Smalle, J., & Vierstra, R. D. (2004). THE UBIQUITIN 26S PROTEASOME PROTEOLYTIC PATHWAY. Annual Review of Plant Biology, 55(1), 555-590. doi:10.1146/annurev.arplant.55.031903.141801 | es_ES |
dc.description.references | Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA Staining for Fluorescence and Laser Confocal Microscopy. Journal of Histochemistry & Cytochemistry, 45(1), 49-53. doi:10.1177/002215549704500107 | es_ES |
dc.description.references | Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1993). Microspore development inBrassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma, 172(2-4), 154-165. doi:10.1007/bf01379373 | es_ES |
dc.description.references | Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1995). Cellular changes during heat shock induction and embryo development of cultured microspores ofBrassica napus cv. Topas. Protoplasma, 185(1-2), 106-112. doi:10.1007/bf01272758 | es_ES |
dc.description.references | Testillano, P. S., Coronado, M. J., Seguı́, J. M., Domenech, J., González-Melendi, P., Raška, I., & Risueño, M. C. (2000). Defined Nuclear Changes Accompany the Reprogramming of the Microspore to Embryogenesis. Journal of Structural Biology, 129(2-3), 223-232. doi:10.1006/jsbi.2000.4249 | es_ES |
dc.description.references | Van der Wilden, W., Herman, E. M., & Chrispeels, M. J. (1980). Protein bodies of mung bean cotyledons as autophagic organelles. Proceedings of the National Academy of Sciences, 77(1), 428-432. doi:10.1073/pnas.77.1.428 | es_ES |
dc.description.references | Wu, H. J., Liu, X. H., Chen, K., Cai, Z. P., Luo, X. J., Zhang, T., & Wang, X. Y. (2009). Disintegration of microsporocytes in a male sterile mutant of Brassica napus L. is possibly associated with endoplasmic reticulum-dependent autophagic programmed cell death. Euphytica, 170(3), 263-274. doi:10.1007/s10681-009-9977-5 | es_ES |
dc.description.references | Zaki, M. A. M., & Dickinson, H. G. (1990). Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma, 156(3), 149-162. doi:10.1007/bf01560653 | es_ES |
dc.description.references | Zaki, M. A. M., & Dickinson, H. G. (1991). Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sexual Plant Reproduction, 4(1). doi:10.1007/bf00194572 | es_ES |