- -

Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning

Mostrar el registro completo del ítem

Corral Martínez, P.; Parra Vega, V.; Seguí-Simarro, JM. (2013). Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. Journal of Experimental Botany. 64(10):3061-3075. https://doi.org/10.1093/jxb/ert151

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63109

Ficheros en el ítem

Metadatos del ítem

Título: Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning
Autor: Corral Martínez, Patricia Parra Vega, Verónica Seguí-Simarro, Jose M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Induction of embryogenesis from isolated microspore cultures is a complex experimental system where microspores undergo dramatic changes in developmental fate. After ~40 years of application of electron microscopy to ...[+]
Palabras clave: Androgenesis , Cryomethods , Doubled haploids , Electron microscopy , Haploids , Microspore embryogenesis , Rapeseed , Ultrastructure , Electron Microscopy Service of the UPV
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/ert151
Editorial:
Oxford University Press (OUP): Policy B - Oxford Open Option A
Versión del editor: http://dx.doi.org/10.1093/jxb/ert151
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//AGL2006-06678/ES/OBTENCION DE LINEAS DOBLE HAPLOIDES EN SOLANACEAS DE ELEVADO INTERES AGRONOMICO: ANALISIS DE AGENTES INDUCTORES Y MECANISMOS CELULARES IMPLICADOS EN LA INDUCCION EMBRIOGENICA EN TOMATE Y BERENJENA/
info:eu-repo/grantAgreement/GVA//BEST%2F2008%2F154/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F168/
info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/
Agradecimientos:
We especially thank Professor L. Andrew Staehelin for his kindness, knowledge, friendship, and help during the stay of JMSS at his lab at the University of Colorado. We also want to express our thanks to Tom Giddings from ...[+]
Tipo: Artículo

References

Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., … Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133(6), 1251-1263. doi:10.1083/jcb.133.6.1251

Bassham, D. C. (2007). Plant autophagy—more than a starvation response. Current Opinion in Plant Biology, 10(6), 587-593. doi:10.1016/j.pbi.2007.06.006

Bassham, D. C. (2009). Function and regulation of macroautophagy in plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9), 1397-1403. doi:10.1016/j.bbamcr.2009.01.001 [+]
Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., … Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133(6), 1251-1263. doi:10.1083/jcb.133.6.1251

Bassham, D. C. (2007). Plant autophagy—more than a starvation response. Current Opinion in Plant Biology, 10(6), 587-593. doi:10.1016/j.pbi.2007.06.006

Bassham, D. C. (2009). Function and regulation of macroautophagy in plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9), 1397-1403. doi:10.1016/j.bbamcr.2009.01.001

Chung, T. (2011). See How I Eat My Greens—Autophagy in Plant Cells. Journal of Plant Biology, 54(6), 339-350. doi:10.1007/s12374-011-9176-5

Contento, A. L., Xiong, Y., & Bassham, D. C. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. The Plant Journal, 42(4), 598-608. doi:10.1111/j.1365-313x.2005.02396.x

Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. doi:10.1111/j.1467-7652.2009.00498.x

DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 352-361. doi:10.1093/jxb/25.2.352

DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 363-373. doi:10.1093/jxb/25.2.363

DUNWELL, J. M., & SUNDERLAND, N. (1975). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 26(2), 240-252. doi:10.1093/jxb/26.2.240

Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375. doi:10.1016/j.tplants.2007.06.007

Germanà, M. A. (2010). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 283-300. doi:10.1007/s11240-010-9852-z

Gilkey, J. C., & Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Journal of Electron Microscopy Technique, 3(2), 177-210. doi:10.1002/jemt.1060030206

Gonz�lez-Melendi, P., Testillano, P. S., Ahmadian, P., Fad�n, B., Vicente, O., & Risue�o, M. C. (1995). In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis inCapsicum. Protoplasma, 187(1-4), 60-71. doi:10.1007/bf01280233

Hause, G., Hause, B., & Lammeren, A. A. M. V. (1992). Microtubular and actin filament configurations during microspore and pollen development in Brassica napus cv. Topas. Canadian Journal of Botany, 70(7), 1369-1376. doi:10.1139/b92-172

Hosp, J., de Maraschin, S. F., Touraev, A., & Boutilier, K. (2006). Functional genomics of microspore embryogenesis. Euphytica, 158(3), 275-285. doi:10.1007/s10681-006-9238-9

Kasha, K. J. (s. f.). Chromosome Doubling and Recovery of Doubled Haploid Plants. Biotechnology in Agriculture and Forestry, 123-152. doi:10.1007/3-540-26889-8_7

Lee, R. M. K. W., McKenzie, R., Kobayashi, K., Garfield, R. E., Forrest, J. B., & Daniel, E. E. (1982). Effects of glutaraldehyde fixative osmolarities on smooth muscle cell volume, and osmotic reactivity of the cells after fixation. Journal of Microscopy, 125(1), 77-88. doi:10.1111/j.1365-2818.1982.tb00324.x

Li, F., & Vierstra, R. D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 17(9), 526-537. doi:10.1016/j.tplants.2012.05.006

Lichter, R. (1982). Induction of Haploid Plants From Isolated Pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105(5), 427-434. doi:10.1016/s0044-328x(82)80040-8

Liu, Y., & Bassham, D. C. (2012). Autophagy: Pathways for Self-Eating in Plant Cells. Annual Review of Plant Biology, 63(1), 215-237. doi:10.1146/annurev-arplant-042811-105441

Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., & Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 98(1), 53-67. doi:10.1042/bc20040516

Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis in Brassica napus. Plant Physiology, 144(1), 134-154. doi:10.1104/pp.106.092932

Maraschin, S. de F., Caspers, M., Potokina, E., Wulfert, F., Graner, A., Spaink, H. P., & Wang, M. (2006). cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum, 127(4), 535-550. doi:10.1111/j.1399-3054.2006.00673.x

Maraschin, S. F., de Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. doi:10.1093/jxb/eri190

Otegui, M. S., Noh, Y.-S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal, 41(6), 831-844. doi:10.1111/j.1365-313x.2005.02346.x

Rashid, A., Siddiqui, A. W., & Reinert, J. (1982). Subcellular aspects of origin and structure of pollen embryos ofNicotiana. Protoplasma, 113(3), 202-208. doi:10.1007/bf01280908

Reyes, F. C., Chung, T., Holding, D., Jung, R., Vierstra, R., & Otegui, M. S. (2011). Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. The Plant Cell, 23(2), 769-784. doi:10.1105/tpc.110.082156

Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., … Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons ofArabidopsis. The Plant Journal, 29(3), 245-255. doi:10.1046/j.0960-7412.2001.01189.x

Seguí-Simarro, J. M. (2010). Androgenesis Revisited. The Botanical Review, 76(3), 377-404. doi:10.1007/s12229-010-9056-6

Seguí-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiologia Plantarum, 134(1), 1-12. doi:10.1111/j.1399-3054.2008.01113.x

Seguí-Simarro, J. M., & Nuez, F. (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenetic and Genome Research, 120(3-4), 358-369. doi:10.1159/000121085

Seguí-Simarro, J. M., & Staehelin, L. A. (2005). Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: A quantitative and spatial analysis. Planta, 223(2), 223-236. doi:10.1007/s00425-005-0082-2

Seguı́-Simarro, J. ., Testillano, P. ., & Risueño, M. . (2003). Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. Journal of Structural Biology, 142(3), 379-391. doi:10.1016/s1047-8477(03)00067-4

Shariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534. doi:10.1111/j.1399-3054.2006.00675.x

Simmonds, D. H., & Keller, W. A. (1999). Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta, 208(3), 383-391. doi:10.1007/s004250050573

Smalle, J., & Vierstra, R. D. (2004). THE UBIQUITIN 26S PROTEASOME PROTEOLYTIC PATHWAY. Annual Review of Plant Biology, 55(1), 555-590. doi:10.1146/annurev.arplant.55.031903.141801

Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA Staining for Fluorescence and Laser Confocal Microscopy. Journal of Histochemistry & Cytochemistry, 45(1), 49-53. doi:10.1177/002215549704500107

Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1993). Microspore development inBrassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma, 172(2-4), 154-165. doi:10.1007/bf01379373

Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1995). Cellular changes during heat shock induction and embryo development of cultured microspores ofBrassica napus cv. Topas. Protoplasma, 185(1-2), 106-112. doi:10.1007/bf01272758

Testillano, P. S., Coronado, M. J., Seguı́, J. M., Domenech, J., González-Melendi, P., Raška, I., & Risueño, M. C. (2000). Defined Nuclear Changes Accompany the Reprogramming of the Microspore to Embryogenesis. Journal of Structural Biology, 129(2-3), 223-232. doi:10.1006/jsbi.2000.4249

Van der Wilden, W., Herman, E. M., & Chrispeels, M. J. (1980). Protein bodies of mung bean cotyledons as autophagic organelles. Proceedings of the National Academy of Sciences, 77(1), 428-432. doi:10.1073/pnas.77.1.428

Wu, H. J., Liu, X. H., Chen, K., Cai, Z. P., Luo, X. J., Zhang, T., & Wang, X. Y. (2009). Disintegration of microsporocytes in a male sterile mutant of Brassica napus L. is possibly associated with endoplasmic reticulum-dependent autophagic programmed cell death. Euphytica, 170(3), 263-274. doi:10.1007/s10681-009-9977-5

Zaki, M. A. M., & Dickinson, H. G. (1990). Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma, 156(3), 149-162. doi:10.1007/bf01560653

Zaki, M. A. M., & Dickinson, H. G. (1991). Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sexual Plant Reproduction, 4(1). doi:10.1007/bf00194572

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem