- -

Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rosello Caselles, Josefa es_ES
dc.contributor.author Sempere Ferre, Francisca es_ES
dc.contributor.author Sanz Berzosa, Isidora es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.contributor.author Santamarina Siurana, Mª Pilar es_ES
dc.date.accessioned 2016-04-28T14:38:52Z
dc.date.available 2016-04-28T14:38:52Z
dc.date.issued 2015-03
dc.identifier.issn 0972-060X
dc.identifier.uri http://hdl.handle.net/10251/63116
dc.description This is an author's accepted manuscript of an article published in: “Journal of Essential Oil Bearing Plants"; Volume 18, Issue 12, 2015; copyright Taylor & Francis; available online at: http://dx.doi.org/10.1080/0972060X.2015.1010601 es_ES
dc.description.abstract Essential oils of bay leaf, cinnamon, clove and oregano were tested in vitro and oregano essential oil in vivo, against two foodborne fungi belonging to the dominant mycobiota of stored rice, Fusarium culmorum and Fusarium verticillioides, collected from the Albuferarice-producing Mediterranean area near Valencia (Spain). Chemical composition was identified by gas chromatography-mass spectrometry. Essential oils presented a high percentage of oxygenated components: 78.8 % in bay leaf (eucalyptol 51 %); 90.3 % in clove (eugenol 89.8 %); 92 % in cinnamon (eugenol 60 % and eugenyl acetate18.3 %); 71.8 % in oregano (carvacrol 49.6 % and thymol 21.2 %). Monoterpenes and sesquiterpenes were: 18 % in bay leaf, 9 % in clove, 5 % in cinnamon, 25 % in oregano. This research showed that essential oils have a great potential to control both fungal pathogens. In the in vitro test, the essential oils of cinnamon, clove and oregano reduced fungal growth by 90 % and almost 100 %, being oregano the most effective essential oil to inhibit fungal growth. The effect of the oregano essential oil on fungal development in inoculated rice grains demonstrated its effectiveness. es_ES
dc.description.sponsorship This study has been financed by the Vice-Chancellor for Research at the Polytechnic University of Valencia as part of its Support Programme to Research and Development, New Lines of Multidisciplinary Research (PAID-05-10), reference number 2644. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles - No Open Select es_ES
dc.relation.ispartof Journal of Essential Oil Bearing Plants es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antigungal activity es_ES
dc.subject Fusarium culmorum es_ES
dc.subject Fusarium verticillioides es_ES
dc.subject Essential oils es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOLOGIA VEGETAL es_ES
dc.title Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/0972060X.2015.1010601
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-10-2644/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Rosello Caselles, J.; Sempere Ferre, F.; Sanz Berzosa, I.; Chiralt Boix, MA.; Santamarina Siurana, MP. (2015). Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. Journal of Essential Oil Bearing Plants. 18(2):359-367. https://doi.org/10.1080/0972060X.2015.1010601 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/0972060X.2015.1010601 es_ES
dc.description.upvformatpinicio 359 es_ES
dc.description.upvformatpfin 367 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 304519 es_ES
dc.identifier.eissn 0976-5026
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). European Journal of Plant Pathology, 109(7), 645-667. doi:10.1023/a:1026033021542 es_ES
dc.description.references AMIRI, A., DUGAS, R., PICHOT, A., & BOMPEIX, G. (2008). In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. International Journal of Food Microbiology, 126(1-2), 13-19. doi:10.1016/j.ijfoodmicro.2008.04.022 es_ES
dc.description.references DIKBAS, N., KOTAN, R., DADASOGLU, F., & SAHIN, F. (2008). Control of Aspergillus flavus with essential oil and methanol extract of Satureja hortensis. International Journal of Food Microbiology, 124(2), 179-182. doi:10.1016/j.ijfoodmicro.2008.03.034 es_ES
dc.description.references Feng, W., & Zheng, X. (2007). Essential oils to control Alternaria alternata in vitro and in vivo. Food Control, 18(9), 1126-1130. doi:10.1016/j.foodcont.2006.05.017 es_ES
dc.description.references Marei, G. I. K., Abdel Rasoul, M. A., & Abdelgaleil, S. A. M. (2012). Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology, 103(1), 56-61. doi:10.1016/j.pestbp.2012.03.004 es_ES
dc.description.references Tzortzakis, N. G. (2009). Impact of cinnamon oil-enrichment on microbial spoilage of fresh produce. Innovative Food Science & Emerging Technologies, 10(1), 97-102. doi:10.1016/j.ifset.2008.09.002 es_ES
dc.description.references Singh, P., Srivastava, B., Kumar, A., Kumar, R., Dubey, N. K., & Gupta, R. (2008). Assessment ofPelargonium graveolensoil as plant-based antimicrobial and aflatoxin suppressor in food preservation. Journal of the Science of Food and Agriculture, 88(14), 2421-2425. doi:10.1002/jsfa.3342 es_ES
dc.description.references Poulose, A. J., & Croteau, R. (1978). Biosynthesis of aromatic monoterpenes. Archives of Biochemistry and Biophysics, 187(2), 307-314. doi:10.1016/0003-9861(78)90039-5 es_ES
dc.description.references Atanda, O. O., Akpan, I., & Oluwafemi, F. (2007). The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control, 18(5), 601-607. doi:10.1016/j.foodcont.2006.02.007 es_ES
dc.description.references De Corato, U., Maccioni, O., Trupo, M., & Di Sanzo, G. (2010). Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi. Crop Protection, 29(2), 142-147. doi:10.1016/j.cropro.2009.10.012 es_ES
dc.description.references Garcia, R., Alves, E. S. S., Santos, M. P., Aquije, G. M. F. V., Fernandes, A. A. R., Santos, R. B. dos, … Fernandes, P. M. B. (2008). Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Brazilian Journal of Microbiology, 39(1), 163-168. doi:10.1590/s1517-83822008000100032 es_ES
dc.description.references ZHAO, L., YANG, X., LI, X., MU, W., & LIU, F. (2011). Antifungal, Insecticidal and Herbicidal Properties of Volatile Components from Paenibacillus polymyxa Strain BMP-11. Agricultural Sciences in China, 10(5), 728-736. doi:10.1016/s1671-2927(11)60056-4 es_ES
dc.description.references Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273-292. doi:10.1016/j.fm.2004.08.006 es_ES
dc.description.references Knaak, N., da Silva, L. D., Andreis, T. F., & Fiuza, L. M. (2013). Chemical characterization and anti-fungal activity of plant extracts and essential oils on the Bipolaris oryzae and Gerlachia oryzae phytopathogens. Australasian Plant Pathology, 42(4), 469-475. doi:10.1007/s13313-013-0220-4 es_ES
dc.description.references Dambolena, J. S., López, A. G., Meriles, J. M., Rubinstein, H. R., & Zygadlo, J. A. (2012). Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure–property–activity relationship study. Food Control, 28(1), 163-170. doi:10.1016/j.foodcont.2012.05.008 es_ES
dc.description.references Ranasinghe, L., Jayawardena, B., & Abeywickrama, K. (2002). Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M.Perry against crown rot and anthracnose pathogens isolated from banana. Letters in Applied Microbiology, 35(3), 208-211. doi:10.1046/j.1472-765x.2002.01165.x es_ES
dc.description.references Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017 es_ES
dc.description.references Mueller-Riebau, F., Berger, B., & Yegen, O. (1995). Chemical Composition and Fungitoxic Properties to Phytopathogenic Fungi of Essential Oils of Selected Aromatic Plants Growing Wild in Turkey. Journal of Agricultural and Food Chemistry, 43(8), 2262-2266. doi:10.1021/jf00056a055 es_ES
dc.description.references Tzortzakis, N. G., & Economakis, C. D. (2007). Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science & Emerging Technologies, 8(2), 253-258. doi:10.1016/j.ifset.2007.01.002 es_ES
dc.description.references Tabanca, N., Demirci, B., Baser, K. H. C., Aytac, Z., Ekici, M., Khan, S. I., … Wedge, D. E. (2006). Chemical Composition and Antifungal Activity ofSalvia macrochlamysandSalvia recognitaEssential Oils. Journal of Agricultural and Food Chemistry, 54(18), 6593-6597. doi:10.1021/jf0608773 es_ES
dc.description.references Filipowicz, N., Kami?ski, M., Kurlenda, J., Asztemborska, M., & Ochocka, J. R. (2003). Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytotherapy Research, 17(3), 227-231. doi:10.1002/ptr.1110 es_ES
dc.description.references Terzi, V., Morcia, C., Faccioli, P., Valè, G., Tacconi, G., & Malnati, M. (2007). In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Letters in Applied Microbiology, 44(6), 613-618. doi:10.1111/j.1472-765x.2007.02128.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem