Mostrar el registro sencillo del ítem
dc.contributor.author | Rosello Caselles, Josefa | es_ES |
dc.contributor.author | Sempere Ferre, Francisca | es_ES |
dc.contributor.author | Sanz Berzosa, Isidora | es_ES |
dc.contributor.author | Chiralt Boix, Mª Amparo | es_ES |
dc.contributor.author | Santamarina Siurana, Mª Pilar | es_ES |
dc.date.accessioned | 2016-04-28T14:38:52Z | |
dc.date.available | 2016-04-28T14:38:52Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0972-060X | |
dc.identifier.uri | http://hdl.handle.net/10251/63116 | |
dc.description | This is an author's accepted manuscript of an article published in: “Journal of Essential Oil Bearing Plants"; Volume 18, Issue 12, 2015; copyright Taylor & Francis; available online at: http://dx.doi.org/10.1080/0972060X.2015.1010601 | es_ES |
dc.description.abstract | Essential oils of bay leaf, cinnamon, clove and oregano were tested in vitro and oregano essential oil in vivo, against two foodborne fungi belonging to the dominant mycobiota of stored rice, Fusarium culmorum and Fusarium verticillioides, collected from the Albuferarice-producing Mediterranean area near Valencia (Spain). Chemical composition was identified by gas chromatography-mass spectrometry. Essential oils presented a high percentage of oxygenated components: 78.8 % in bay leaf (eucalyptol 51 %); 90.3 % in clove (eugenol 89.8 %); 92 % in cinnamon (eugenol 60 % and eugenyl acetate18.3 %); 71.8 % in oregano (carvacrol 49.6 % and thymol 21.2 %). Monoterpenes and sesquiterpenes were: 18 % in bay leaf, 9 % in clove, 5 % in cinnamon, 25 % in oregano. This research showed that essential oils have a great potential to control both fungal pathogens. In the in vitro test, the essential oils of cinnamon, clove and oregano reduced fungal growth by 90 % and almost 100 %, being oregano the most effective essential oil to inhibit fungal growth. The effect of the oregano essential oil on fungal development in inoculated rice grains demonstrated its effectiveness. | es_ES |
dc.description.sponsorship | This study has been financed by the Vice-Chancellor for Research at the Polytechnic University of Valencia as part of its Support Programme to Research and Development, New Lines of Multidisciplinary Research (PAID-05-10), reference number 2644. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles - No Open Select | es_ES |
dc.relation.ispartof | Journal of Essential Oil Bearing Plants | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antigungal activity | es_ES |
dc.subject | Fusarium culmorum | es_ES |
dc.subject | Fusarium verticillioides | es_ES |
dc.subject | Essential oils | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | BIOLOGIA VEGETAL | es_ES |
dc.title | Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/0972060X.2015.1010601 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-10-2644/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Rosello Caselles, J.; Sempere Ferre, F.; Sanz Berzosa, I.; Chiralt Boix, MA.; Santamarina Siurana, MP. (2015). Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. Journal of Essential Oil Bearing Plants. 18(2):359-367. https://doi.org/10.1080/0972060X.2015.1010601 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/0972060X.2015.1010601 | es_ES |
dc.description.upvformatpinicio | 359 | es_ES |
dc.description.upvformatpfin | 367 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 304519 | es_ES |
dc.identifier.eissn | 0976-5026 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). European Journal of Plant Pathology, 109(7), 645-667. doi:10.1023/a:1026033021542 | es_ES |
dc.description.references | AMIRI, A., DUGAS, R., PICHOT, A., & BOMPEIX, G. (2008). In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. International Journal of Food Microbiology, 126(1-2), 13-19. doi:10.1016/j.ijfoodmicro.2008.04.022 | es_ES |
dc.description.references | DIKBAS, N., KOTAN, R., DADASOGLU, F., & SAHIN, F. (2008). Control of Aspergillus flavus with essential oil and methanol extract of Satureja hortensis. International Journal of Food Microbiology, 124(2), 179-182. doi:10.1016/j.ijfoodmicro.2008.03.034 | es_ES |
dc.description.references | Feng, W., & Zheng, X. (2007). Essential oils to control Alternaria alternata in vitro and in vivo. Food Control, 18(9), 1126-1130. doi:10.1016/j.foodcont.2006.05.017 | es_ES |
dc.description.references | Marei, G. I. K., Abdel Rasoul, M. A., & Abdelgaleil, S. A. M. (2012). Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology, 103(1), 56-61. doi:10.1016/j.pestbp.2012.03.004 | es_ES |
dc.description.references | Tzortzakis, N. G. (2009). Impact of cinnamon oil-enrichment on microbial spoilage of fresh produce. Innovative Food Science & Emerging Technologies, 10(1), 97-102. doi:10.1016/j.ifset.2008.09.002 | es_ES |
dc.description.references | Singh, P., Srivastava, B., Kumar, A., Kumar, R., Dubey, N. K., & Gupta, R. (2008). Assessment ofPelargonium graveolensoil as plant-based antimicrobial and aflatoxin suppressor in food preservation. Journal of the Science of Food and Agriculture, 88(14), 2421-2425. doi:10.1002/jsfa.3342 | es_ES |
dc.description.references | Poulose, A. J., & Croteau, R. (1978). Biosynthesis of aromatic monoterpenes. Archives of Biochemistry and Biophysics, 187(2), 307-314. doi:10.1016/0003-9861(78)90039-5 | es_ES |
dc.description.references | Atanda, O. O., Akpan, I., & Oluwafemi, F. (2007). The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control, 18(5), 601-607. doi:10.1016/j.foodcont.2006.02.007 | es_ES |
dc.description.references | De Corato, U., Maccioni, O., Trupo, M., & Di Sanzo, G. (2010). Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi. Crop Protection, 29(2), 142-147. doi:10.1016/j.cropro.2009.10.012 | es_ES |
dc.description.references | Garcia, R., Alves, E. S. S., Santos, M. P., Aquije, G. M. F. V., Fernandes, A. A. R., Santos, R. B. dos, … Fernandes, P. M. B. (2008). Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Brazilian Journal of Microbiology, 39(1), 163-168. doi:10.1590/s1517-83822008000100032 | es_ES |
dc.description.references | ZHAO, L., YANG, X., LI, X., MU, W., & LIU, F. (2011). Antifungal, Insecticidal and Herbicidal Properties of Volatile Components from Paenibacillus polymyxa Strain BMP-11. Agricultural Sciences in China, 10(5), 728-736. doi:10.1016/s1671-2927(11)60056-4 | es_ES |
dc.description.references | Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273-292. doi:10.1016/j.fm.2004.08.006 | es_ES |
dc.description.references | Knaak, N., da Silva, L. D., Andreis, T. F., & Fiuza, L. M. (2013). Chemical characterization and anti-fungal activity of plant extracts and essential oils on the Bipolaris oryzae and Gerlachia oryzae phytopathogens. Australasian Plant Pathology, 42(4), 469-475. doi:10.1007/s13313-013-0220-4 | es_ES |
dc.description.references | Dambolena, J. S., López, A. G., Meriles, J. M., Rubinstein, H. R., & Zygadlo, J. A. (2012). Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure–property–activity relationship study. Food Control, 28(1), 163-170. doi:10.1016/j.foodcont.2012.05.008 | es_ES |
dc.description.references | Ranasinghe, L., Jayawardena, B., & Abeywickrama, K. (2002). Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M.Perry against crown rot and anthracnose pathogens isolated from banana. Letters in Applied Microbiology, 35(3), 208-211. doi:10.1046/j.1472-765x.2002.01165.x | es_ES |
dc.description.references | Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017 | es_ES |
dc.description.references | Mueller-Riebau, F., Berger, B., & Yegen, O. (1995). Chemical Composition and Fungitoxic Properties to Phytopathogenic Fungi of Essential Oils of Selected Aromatic Plants Growing Wild in Turkey. Journal of Agricultural and Food Chemistry, 43(8), 2262-2266. doi:10.1021/jf00056a055 | es_ES |
dc.description.references | Tzortzakis, N. G., & Economakis, C. D. (2007). Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science & Emerging Technologies, 8(2), 253-258. doi:10.1016/j.ifset.2007.01.002 | es_ES |
dc.description.references | Tabanca, N., Demirci, B., Baser, K. H. C., Aytac, Z., Ekici, M., Khan, S. I., … Wedge, D. E. (2006). Chemical Composition and Antifungal Activity ofSalvia macrochlamysandSalvia recognitaEssential Oils. Journal of Agricultural and Food Chemistry, 54(18), 6593-6597. doi:10.1021/jf0608773 | es_ES |
dc.description.references | Filipowicz, N., Kami?ski, M., Kurlenda, J., Asztemborska, M., & Ochocka, J. R. (2003). Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytotherapy Research, 17(3), 227-231. doi:10.1002/ptr.1110 | es_ES |
dc.description.references | Terzi, V., Morcia, C., Faccioli, P., Valè, G., Tacconi, G., & Malnati, M. (2007). In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Letters in Applied Microbiology, 44(6), 613-618. doi:10.1111/j.1472-765x.2007.02128.x | es_ES |