- -

A one-dimensional optomechanical crystal with a complete phononic band gap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A one-dimensional optomechanical crystal with a complete phononic band gap

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomis Bresco, Jordi es_ES
dc.contributor.author Navarro Urríos, Daniel es_ES
dc.contributor.author Oudich, M. es_ES
dc.contributor.author El-Jallal, S. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Puerto Garcia, Daniel es_ES
dc.contributor.author Chavez, E. es_ES
dc.contributor.author Pennec, Y. es_ES
dc.contributor.author Djafari-Rouhani, B. es_ES
dc.contributor.author Alzina, F. es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Sotomayor Torres, C.M. es_ES
dc.date.accessioned 2016-05-03T09:17:05Z
dc.date.available 2016-05-03T09:17:05Z
dc.date.issued 2014-07
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/63401
dc.description.abstract [EN] Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical and mechanical waves at the nanoscale. Among their physical implementations, optomechanical (OM) crystals built on semiconductor slabs enable the integration and manipulation of multiple OM elements in a single chip and provide gigahertz phonons suitable for coherent phonon manipulation. Different demonstrations of coupling of infrared photons and gigahertz phonons in cavities created by inserting defects on OM crystals have been performed. However, the considered structures do not show a complete phononic bandgap, which should enable longer lifetimes, as acoustic leakage is minimized. Here we demonstrate the excitation of acoustic modes in a one-dimensional OM crystal properly designed to display a full phononic bandgap for acoustic modes at 4 GHz. The modes inside the complete bandgap are designed to have high-mechanical Q-factors, limit clamping losses and be invariant to fabrication imperfections. es_ES
dc.description.sponsorship This work was supported by the European Commission Seventh Framework Programs (FP7) under the FET-Open project TAILPHOX No 233883. J.G.-B., D.N.-U., E.C., F.A. and C.M.S.-T. acknowledge financial support from the Spanish projects ACPHIN (ref. FIS2009-10150) and TAPHOR (MAT2012-31392). J.G.-B. and D.P. acknowledges funding from the Spanish government through the Juan de la Cierva programme, D. N.-U. acknowledges funding from the Catalan government through the Beatriu de Pinos programme. We thank Juan Sierra for his valuable technical advice. We thank the ICN2's electron microscopy division and M. Sledzinska for the assistance with the SEM images. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optomechanics es_ES
dc.subject Cavity optomechanics es_ES
dc.subject Phoxonic crystals es_ES
dc.subject Phononic bandgap es_ES
dc.subject Quantum ground-state es_ES
dc.subject Induced transparency es_ES
dc.subject Oscillator es_ES
dc.subject Mode es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A one-dimensional optomechanical crystal with a complete phononic band gap es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms5452
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-10150/ES/Estudio De Fonones Acusticos Confinados En Nanoestructuras Nanofabricadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-31392/ES/DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Gomis Bresco, J.; Navarro Urríos, D.; Oudich, M.; El-Jallal, S.; Griol Barres, A.; Puerto Garcia, D.; Chavez, E.... (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications. 5(4452):1-6. https://doi.org/10.1038/ncomms5452 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms5452 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 4452 es_ES
dc.relation.senia 268599 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008). es_ES
dc.description.references Kippenberg, T. J. & Vahala, K. J. Cavity Opto-Mechanics. Opt. Express 15, 17172–17205 (2007). es_ES
dc.description.references Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nat. Photonics 3, 201–205 (2009). es_ES
dc.description.references Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009). es_ES
dc.description.references Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol 7, 509–514 (2012). es_ES
dc.description.references Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6, 768 (2012). es_ES
dc.description.references Li, H., Chen, Y., Noh, J., Tadesse, S. & Li, M. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nat. Commun. 3, 1091 (2012). es_ES
dc.description.references Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012). es_ES
dc.description.references Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011). es_ES
dc.description.references Tallur, S. & Bhave, S. A. A silicon electromechanical photodetector. Nano Lett. 13, 2760–2765 (2013). es_ES
dc.description.references Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005). es_ES
dc.description.references Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009). es_ES
dc.description.references Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009). es_ES
dc.description.references Cleland, A. Photons refrigerating phonons. Nat. Phys. 5, 458 (2009). es_ES
dc.description.references Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007). es_ES
dc.description.references Wang, Y.-D. & Clerk, A. A. Using Interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012). es_ES
dc.description.references Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012). es_ES
dc.description.references Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012). es_ES
dc.description.references Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011). es_ES
dc.description.references Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011). es_ES
dc.description.references Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011). es_ES
dc.description.references Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010). es_ES
dc.description.references Verhagen, E., Deléglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012). es_ES
dc.description.references Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arxiv.org/abs/1303.0733v1 (2013). es_ES
dc.description.references Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008). es_ES
dc.description.references Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012). es_ES
dc.description.references Ding, L. et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011). es_ES
dc.description.references O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). es_ES
dc.description.references Goryachev, M. et al. Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature. Appl. Phys. Lett. 100, 243504 (2012). es_ES
dc.description.references Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009). es_ES
dc.description.references Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011). es_ES
dc.description.references Sun, X., Zhang, X., Poot, M., Xiong, C. & Tang, H. X. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity. Appl. Phys. Lett. 101, 221116 (2012). es_ES
dc.description.references Safavi-Naeini, A. H. et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014). es_ES
dc.description.references Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011). es_ES
dc.description.references Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006). es_ES
dc.description.references Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013). es_ES
dc.description.references Cuffe, J. et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Phys. Rev. Lett. 110, 095503 (2013). es_ES
dc.description.references Marconnet, A. M., Kodama, T., Asheghi, M. & Goodson, K. E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale Microscale Thermophys. Eng. 16, 199–219 (2012). es_ES
dc.description.references Ding, L., Belacel, C., Ducci, S., Leo, G. & Favero, I. Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt. 49, 2441 (2010). es_ES
dc.description.references Navarro-Urrios, D. et al. Synchronization of an optomechanical oscillator and thermal/free-carrier self-pulsing using optical comb forces. Preprint at http://arxiv.org/abs/1403.6043 (2014). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem