- -

Improving the effectiveness of amiRNA-mediated resistance against Turnip mosaic virus by combining two amiRNAs or by targeting highly conserved viral genomic regions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the effectiveness of amiRNA-mediated resistance against Turnip mosaic virus by combining two amiRNAs or by targeting highly conserved viral genomic regions

Mostrar el registro completo del ítem

Lafforgue, G.; Martínez, F.; Niu, QW.; Chua, NH.; Daros Arnau, JA.; Elena Fito, SF. (2013). Improving the effectiveness of amiRNA-mediated resistance against Turnip mosaic virus by combining two amiRNAs or by targeting highly conserved viral genomic regions. Journal of Virology. 87(14):8254-8256. https://doi.org/10.1128/JVI.00914-13

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63474

Ficheros en el ítem

Metadatos del ítem

Título: Improving the effectiveness of amiRNA-mediated resistance against Turnip mosaic virus by combining two amiRNAs or by targeting highly conserved viral genomic regions
Autor: Lafforgue, Guillaume Martínez, Fernando Niu, Qi Wen Chua, Nam Hai Daros Arnau, Jose Antonio Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] A drawback of recent antiviral therapies based on the transgenic expression of artificial microRNAs (amiRs) is the ease with which viruses generate escape mutations. Here, we show two alternative strategies for ...[+]
Palabras clave: RNA INTERFERENCE , ESCAPE , REPLICATION , INHIBITION , EXPRESSION
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Virology. (issn: 0022-538X )
DOI: 10.1128/JVI.00914-13
Editorial:
American Society for Microbiology
Versión del editor: https://dx.doi.org/10.1128/JVI.00914-13
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/
info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/
info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
info:eu-repo/grantAgreement/CSIC//2010TW0015/ES/Evaluation of the durability of artificial microRNA-mediated strategies for plant resistance to RNA viruses/
info:eu-repo/grantAgreement/MICINN//BIO2011-26741/ES/PATOGENOS DE RNA DE PLANTAS: INTERACCION CON EL HUESPED Y DESARROLLO DE HERRAMIENTAS BIOTECNOLOGICAS/
Agradecimientos:
This work was supported by grants RGP12/2008 from the Human Frontier Science Program Organization, PROMETEO2010/019 from the Generalitat Valenciana, and BFU2012-30805 from the Spanish Ministerio de Economia y Competitividad ...[+]
Tipo: Artículo

References

Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255

Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human Immunodeficiency Virus Type 1 Escape from RNA Interference. Journal of Virology, 77(21), 11531-11535. doi:10.1128/jvi.77.21.11531-11535.2003

Ge, Q., McManus, M. T., Nguyen, T., Shen, C.-H., Sharp, P. A., Eisen, H. N., & Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences, 100(5), 2718-2723. doi:10.1073/pnas.0437841100 [+]
Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255

Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human Immunodeficiency Virus Type 1 Escape from RNA Interference. Journal of Virology, 77(21), 11531-11535. doi:10.1128/jvi.77.21.11531-11535.2003

Ge, Q., McManus, M. T., Nguyen, T., Shen, C.-H., Sharp, P. A., Eisen, H. N., & Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences, 100(5), 2718-2723. doi:10.1073/pnas.0437841100

Kronke, J., Kittler, R., Buchholz, F., Windisch, M. P., Pietschmann, T., Bartenschlager, R., & Frese, M. (2004). Alternative Approaches for Efficient Inhibition of Hepatitis C Virus RNA Replication by Small Interfering RNAs. Journal of Virology, 78(7), 3436-3446. doi:10.1128/jvi.78.7.3436-3446.2004

Gitlin, L., Stone, J. K., & Andino, R. (2004). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005

Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11

Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312

Simon-Mateo, C., & Garcia, J. A. (2006). MicroRNA-Guided Processing Impairs Plum Pox Virus Replication, but the Virus Readily Evolves To Escape This Silencing Mechanism. Journal of Virology, 80(5), 2429-2436. doi:10.1128/jvi.80.5.2429-2436.2006

Martínez, F., Lafforgue, G., Morelli, M. J., González-Candelas, F., Chua, N.-H., Daròs, J.-A., & Elena, S. F. (2012). Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants. Molecular Biology and Evolution, 29(11), 3297-3307. doi:10.1093/molbev/mss135

KUNG, Y.-J., LIN, S.-S., HUANG, Y.-L., CHEN, T.-C., HARISH, S. S., CHUA, N.-H., & YEH, S.-D. (2011). Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Molecular Plant Pathology, 13(3), 303-317. doi:10.1111/j.1364-3703.2011.00747.x

Fahim, M., Millar, A. A., Wood, C. C., & Larkin, P. J. (2011). Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163. doi:10.1111/j.1467-7652.2011.00647.x

Ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA Interference: a Multiple shRNA Approach. Molecular Therapy, 14(6), 883-892. doi:10.1016/j.ymthe.2006.07.007

Shah, P. S., Pham, N. P., & Schaffer, D. V. (2012). HIV Develops Indirect Cross-resistance to Combinatorial RNAi Targeting Two Distinct and Spatially Distant Sites. Molecular Therapy, 20(4), 840-848. doi:10.1038/mt.2012.3

Duan, C.-G., Wang, C.-H., Fang, R.-X., & Guo, H.-S. (2008). Artificial MicroRNAs Highly Accessible to Targets Confer Efficient Virus Resistance in Plants. Journal of Virology, 82(22), 11084-11095. doi:10.1128/jvi.01377-08

Jiang, F., Song, Y., Han, Q., Zhu, C., & Wen, F. (2011). The choice of target site is crucial in artificial miRNA-mediated virus resistance in transgenic Nicotiana tabacum. Physiological and Molecular Plant Pathology, 76(1), 2-8. doi:10.1016/j.pmpp.2011.07.002

De la Iglesia, F., Martinez, F., Hillung, J., Cuevas, J. M., Gerrish, P. J., Daros, J.-A., & Elena, S. F. (2012). Luria-Delbruck Estimation of Turnip Mosaic Virus Mutation Rate In Vivo. Journal of Virology, 86(6), 3386-3388. doi:10.1128/jvi.06909-11

Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification ofTurnip mosaic virusIsolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901

Zabell, S. L. (1989). The rule of succession. Erkenntnis, 31(2-3), 283-321. doi:10.1007/bf01236567

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12

Coburn, G. A., & Cullen, B. R. (2002). Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference. Journal of Virology, 76(18), 9225-9231. doi:10.1128/jvi.76.18.9225-9231.2002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem