- -

Knowledge acquisition with forgetting: an incremental and developmental setting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Knowledge acquisition with forgetting: an incremental and developmental setting

Mostrar el registro completo del ítem

Martínez Plumed, F.; Ferri Ramírez, C.; Hernández Orallo, J.; Ramírez Quintana, MJ. (2015). Knowledge acquisition with forgetting: an incremental and developmental setting. Adaptive Behavior. 23(5):283-299. https://doi.org/10.1177/1059712315608675

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63485

Ficheros en el ítem

Metadatos del ítem

Título: Knowledge acquisition with forgetting: an incremental and developmental setting
Autor: Martínez Plumed, Fernando Ferri Ramírez, César Hernández Orallo, José Ramírez Quintana, María José
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
Identifying the balance between remembering and forgetting is the key to abstraction in the human brain and, therefore, the creation of memories and knowledge. We present an incremental, lifelong view of knowledge ...[+]
Palabras clave: Memory , Forgetting , Consolidation , Knowledge acquisition, , Declarative learning , MML , Lifelong machine learning
Derechos de uso: Reserva de todos los derechos
Fuente:
Adaptive Behavior. (issn: 1059-7123 )
DOI: 10.1177/1059712315608675
Editorial:
SAGE Publications (UK and US)
Versión del editor: http://dx.doi.org/ 10.1177/1059712315608675
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2013-45732-C4-1-P/ES/UNA APROXIMACION DECLARATIVA AL MODELADO, ANALISIS Y RESOLUCION DE PROBLEMAS/
info:eu-repo/grantAgreement/MICINN//BES-2011-045099/ES/BES-2011-045099/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2011%2F052/ES/LOGICEXTREME: TECNOLOGIA LOGICA Y SOFTWARE SEGURO/
info:eu-repo/grantAgreement/MINECO//PCIN-2013-037/ES/RETHINKING THE ESSENCE, FLEXIBILITY AND REUSABILITY OF ADVANCED MODEL EXPLOITATION/
Agradecimientos:
This work has been partially supported by the EU (FEDER) and the Spanish MINECO (grant TIN 2013-45732-C4-1-P and FPI-ME grant BES-2011-045099), by Generalitat Valenciana (PROMETEO2011/052) and the REFRAME project, granted ...[+]
Tipo: Artículo

References

Alnajjar, F., Bin Mohd Zin, I., & Murase, K. (2009). A Hierarchical Autonomous Robot Controller for Learning and Memory: Adaptation in a Dynamic Environment. Adaptive Behavior, 17(3), 179-196. doi:10.1177/1059712309105814

Ans, B., & Rousset, S. (1997). Avoiding catastrophic forgetting by coupling two reverberating neural networks. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 320(12), 989-997. doi:10.1016/s0764-4469(97)82472-9

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x [+]
Alnajjar, F., Bin Mohd Zin, I., & Murase, K. (2009). A Hierarchical Autonomous Robot Controller for Learning and Memory: Adaptation in a Dynamic Environment. Adaptive Behavior, 17(3), 179-196. doi:10.1177/1059712309105814

Ans, B., & Rousset, S. (1997). Avoiding catastrophic forgetting by coupling two reverberating neural networks. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 320(12), 989-997. doi:10.1016/s0764-4469(97)82472-9

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x

Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21(3), 77-88. doi:10.1109/2.33

Della Sala, S. (2010). Forgetting. doi:10.4324/9780203851647

Eiter, T., & Wang, K. (2008). Semantic forgetting in answer set programming. Artificial Intelligence, 172(14), 1644-1672. doi:10.1016/j.artint.2008.05.002

Erbas, M. D., Winfield, A. F., & Bull, L. (2013). Embodied imitation-enhanced reinforcement learning in multi-agent systems. Adaptive Behavior, 22(1), 31-50. doi:10.1177/1059712313500503

Ferri-Ramírez, C., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2001). Incremental Learning of Functional Logic Programs. Lecture Notes in Computer Science, 233-247. doi:10.1007/3-540-44716-4_15

FRENCH, R. M. (1997). Pseudo-recurrent Connectionist Networks: An Approach to the «Sensitivity-Stability» Dilemma. Connection Science, 9(4), 353-380. doi:10.1080/095400997116595

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4), 1-37. doi:10.1145/2523813

Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1-47. doi:10.1016/j.neunet.2012.09.017

Hernandez-Orallo, J. (2000). Constructive reinforcement learning. International Journal of Intelligent Systems, 15(3), 241-264. doi:10.1002/(sici)1098-111x(200003)15:3<241::aid-int6>3.0.co;2-z

Hernández-Orallo, J., & García-Varea, I. (2000). Foundations of Science, 5(2), 185-207. doi:10.1023/a:1011350914776

Hourdakis, E., & Trahanias, P. (2012). Computational modeling of observational learning inspired by the cortical underpinnings of human primates. Adaptive Behavior, 20(4), 237-256. doi:10.1177/1059712312445902

Kitzelmann, E. (2010). Inductive Programming: A Survey of Program Synthesis Techniques. Lecture Notes in Computer Science, 50-73. doi:10.1007/978-3-642-11931-6_3

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604-632. doi:10.1145/324133.324140

Lang, J., Liberatore, P., & Marquis, P. (2003). Propositional Independence - Formula-Variable Independence and Forgetting. Journal of Artificial Intelligence Research, 18, 391-443. doi:10.1613/jair.1113

Lang, J., & Marquis, P. (2010). Reasoning under inconsistency: A forgetting-based approach. Artificial Intelligence, 174(12-13), 799-823. doi:10.1016/j.artint.2010.04.023

Lempel, R., & Moran, S. (2000). The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Computer Networks, 33(1-6), 387-401. doi:10.1016/s1389-1286(00)00034-7

Leu, G., Curtis, N. J., & Abbass, H. A. (2013). Society of Mind cognitive agent architecture applied to drivers adapting in a traffic context. Adaptive Behavior, 22(2), 123-145. doi:10.1177/1059712313509652

Li, M., & Vitányi, P. (2008). An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science. doi:10.1007/978-0-387-49820-1

Martínez-Plumed, F., Ferri, C., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2013). Learning with Configurable Operators and RL-Based Heuristics. Lecture Notes in Computer Science, 1-16. doi:10.1007/978-3-642-37382-4_1

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13(3-4), 245-286. doi:10.1007/bf03037227

Muggleton, S., Bain, M., Hayes-Michie, J., & Michie, D. (1989). An Experimental Comparison of Human and Machine Learning Formalisms. Proceedings of the Sixth International Workshop on Machine Learning, 113-118. doi:10.1016/b978-1-55860-036-2.50037-0

Muggleton, S., & de Raedt, L. (1994). Inductive Logic Programming: Theory and methods. The Journal of Logic Programming, 19-20, 629-679. doi:10.1016/0743-1066(94)90035-3

Quiroga, R. Q. (2012). Concept cells: the building blocks of declarative memory functions. Nature Reviews Neuroscience, 13(8), 587-597. doi:10.1038/nrn3251

Raducanu, B., & Vitrià, J. (2008). Learning to learn: From smart machines to intelligent machines. Pattern Recognition Letters, 29(8), 1024-1032. doi:10.1016/j.patrec.2007.09.003

Rissanen, J. (1999). Hypothesis Selection and Testing by the MDL Principle. The Computer Journal, 42(4), 260-269. doi:10.1093/comjnl/42.4.260

Shannon, C. E. (1949). Communication Theory of Secrecy Systems*. Bell System Technical Journal, 28(4), 656-715. doi:10.1002/j.1538-7305.1949.tb00928.x

Shastri, L. (2001). Biological Grounding of Recruitment Learning and Vicinal Algorithms in Long-Term Potentiation. Lecture Notes in Computer Science, 348-367. doi:10.1007/3-540-44597-8_26

Su, K., Sattar, A., Lv, G., & Zhang, Y. (2009). Variable Forgetting in Reasoning about Knowledge. Journal of Artificial Intelligence Research, 35, 677-716. doi:10.1613/jair.2750

Wallace, C. S., & Boulton, D. M. (1968). An Information Measure for Classification. The Computer Journal, 11(2), 185-194. doi:10.1093/comjnl/11.2.185

Wallace, C. S. (1999). Refinements of MDL and MML Coding. The Computer Journal, 42(4), 330-337. doi:10.1093/comjnl/42.4.330

Wang, Z., Wang, K., Topor, R., & Pan, J. Z. (2010). Forgetting for knowledge bases in DL-Lite. Annals of Mathematics and Artificial Intelligence, 58(1-2), 117-151. doi:10.1007/s10472-010-9187-9

Wixted, J. T. (2004). The Psychology and Neuroscience of Forgetting. Annual Review of Psychology, 55(1), 235-269. doi:10.1146/annurev.psych.55.090902.141555

Wood, R., Baxter, P., & Belpaeme, T. (2011). A review of long-term memory in natural and synthetic systems. Adaptive Behavior, 20(2), 81-103. doi:10.1177/1059712311421219

Zhang, Y., & Foo, N. Y. (2006). Solving logic program conflict through strong and weak forgettings. Artificial Intelligence, 170(8-9), 739-778. doi:10.1016/j.artint.2006.02.002

Zhang, Y., & Zhou, Y. (2009). Knowledge forgetting: Properties and applications. Artificial Intelligence, 173(16-17), 1525-1537. doi:10.1016/j.artint.2009.07.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem