- -

Knowledge acquisition with forgetting: an incremental and developmental setting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Knowledge acquisition with forgetting: an incremental and developmental setting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Plumed, Fernando es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Ramírez Quintana, María José es_ES
dc.date.accessioned 2016-05-04T07:54:07Z
dc.date.available 2016-05-04T07:54:07Z
dc.date.issued 2015-10
dc.identifier.issn 1059-7123
dc.identifier.uri http://hdl.handle.net/10251/63485
dc.description.abstract Identifying the balance between remembering and forgetting is the key to abstraction in the human brain and, therefore, the creation of memories and knowledge. We present an incremental, lifelong view of knowledge acquisition which tries to improve task after task by determining what to keep, consolidate and forget, overcoming the stability-plasticity dilemma. Our framework can combine any rule-based inductive engine (which learns new rules) with a deductive engine (which derives a coverage graph for all rules) and integrates them into a lifelong learner. We rate rules by introducing several metrics through the first adaptation, to our knowledge, of the Minimum Message Length (MML) principle to a coverage graph, a hierarchical assessment structure which handles evidence and rules in a unified way. The metrics are used to forget some of the worst rules and also to consolidate those selected rules that are promoted to the knowledge base. This mechanism is also mirrored by a demotion system. We evaluate the framework with a series of tasks in a chess rule learning domain. es_ES
dc.description.sponsorship This work has been partially supported by the EU (FEDER) and the Spanish MINECO (grant TIN 2013-45732-C4-1-P and FPI-ME grant BES-2011-045099), by Generalitat Valenciana (PROMETEO2011/052) and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Adaptive Behavior es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Memory es_ES
dc.subject Forgetting es_ES
dc.subject Consolidation es_ES
dc.subject Knowledge acquisition, es_ES
dc.subject Declarative learning es_ES
dc.subject MML es_ES
dc.subject Lifelong machine learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Knowledge acquisition with forgetting: an incremental and developmental setting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1059712315608675
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-45732-C4-1-P/ES/UNA APROXIMACION DECLARATIVA AL MODELADO, ANALISIS Y RESOLUCION DE PROBLEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-045099/ES/BES-2011-045099/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2011%2F052/ES/LOGICEXTREME: TECNOLOGIA LOGICA Y SOFTWARE SEGURO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PCIN-2013-037/ES/RETHINKING THE ESSENCE, FLEXIBILITY AND REUSABILITY OF ADVANCED MODEL EXPLOITATION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Martínez Plumed, F.; Ferri Ramírez, C.; Hernández Orallo, J.; Ramírez Quintana, MJ. (2015). Knowledge acquisition with forgetting: an incremental and developmental setting. Adaptive Behavior. 23(5):283-299. https://doi.org/10.1177/1059712315608675 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/ 10.1177/1059712315608675 es_ES
dc.description.upvformatpinicio 283 es_ES
dc.description.upvformatpfin 299 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 300811 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Alnajjar, F., Bin Mohd Zin, I., & Murase, K. (2009). A Hierarchical Autonomous Robot Controller for Learning and Memory: Adaptation in a Dynamic Environment. Adaptive Behavior, 17(3), 179-196. doi:10.1177/1059712309105814 es_ES
dc.description.references Ans, B., & Rousset, S. (1997). Avoiding catastrophic forgetting by coupling two reverberating neural networks. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 320(12), 989-997. doi:10.1016/s0764-4469(97)82472-9 es_ES
dc.description.references Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x es_ES
dc.description.references Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21(3), 77-88. doi:10.1109/2.33 es_ES
dc.description.references Della Sala, S. (2010). Forgetting. doi:10.4324/9780203851647 es_ES
dc.description.references Eiter, T., & Wang, K. (2008). Semantic forgetting in answer set programming. Artificial Intelligence, 172(14), 1644-1672. doi:10.1016/j.artint.2008.05.002 es_ES
dc.description.references Erbas, M. D., Winfield, A. F., & Bull, L. (2013). Embodied imitation-enhanced reinforcement learning in multi-agent systems. Adaptive Behavior, 22(1), 31-50. doi:10.1177/1059712313500503 es_ES
dc.description.references Ferri-Ramírez, C., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2001). Incremental Learning of Functional Logic Programs. Lecture Notes in Computer Science, 233-247. doi:10.1007/3-540-44716-4_15 es_ES
dc.description.references FRENCH, R. M. (1997). Pseudo-recurrent Connectionist Networks: An Approach to the «Sensitivity-Stability» Dilemma. Connection Science, 9(4), 353-380. doi:10.1080/095400997116595 es_ES
dc.description.references Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4), 1-37. doi:10.1145/2523813 es_ES
dc.description.references Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1-47. doi:10.1016/j.neunet.2012.09.017 es_ES
dc.description.references Hernandez-Orallo, J. (2000). Constructive reinforcement learning. International Journal of Intelligent Systems, 15(3), 241-264. doi:10.1002/(sici)1098-111x(200003)15:3<241::aid-int6>3.0.co;2-z es_ES
dc.description.references Hernández-Orallo, J., & García-Varea, I. (2000). Foundations of Science, 5(2), 185-207. doi:10.1023/a:1011350914776 es_ES
dc.description.references Hourdakis, E., & Trahanias, P. (2012). Computational modeling of observational learning inspired by the cortical underpinnings of human primates. Adaptive Behavior, 20(4), 237-256. doi:10.1177/1059712312445902 es_ES
dc.description.references Kitzelmann, E. (2010). Inductive Programming: A Survey of Program Synthesis Techniques. Lecture Notes in Computer Science, 50-73. doi:10.1007/978-3-642-11931-6_3 es_ES
dc.description.references Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604-632. doi:10.1145/324133.324140 es_ES
dc.description.references Lang, J., Liberatore, P., & Marquis, P. (2003). Propositional Independence - Formula-Variable Independence and Forgetting. Journal of Artificial Intelligence Research, 18, 391-443. doi:10.1613/jair.1113 es_ES
dc.description.references Lang, J., & Marquis, P. (2010). Reasoning under inconsistency: A forgetting-based approach. Artificial Intelligence, 174(12-13), 799-823. doi:10.1016/j.artint.2010.04.023 es_ES
dc.description.references Lempel, R., & Moran, S. (2000). The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Computer Networks, 33(1-6), 387-401. doi:10.1016/s1389-1286(00)00034-7 es_ES
dc.description.references Leu, G., Curtis, N. J., & Abbass, H. A. (2013). Society of Mind cognitive agent architecture applied to drivers adapting in a traffic context. Adaptive Behavior, 22(2), 123-145. doi:10.1177/1059712313509652 es_ES
dc.description.references Li, M., & Vitányi, P. (2008). An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science. doi:10.1007/978-0-387-49820-1 es_ES
dc.description.references Martínez-Plumed, F., Ferri, C., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2013). Learning with Configurable Operators and RL-Based Heuristics. Lecture Notes in Computer Science, 1-16. doi:10.1007/978-3-642-37382-4_1 es_ES
dc.description.references Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13(3-4), 245-286. doi:10.1007/bf03037227 es_ES
dc.description.references Muggleton, S., Bain, M., Hayes-Michie, J., & Michie, D. (1989). An Experimental Comparison of Human and Machine Learning Formalisms. Proceedings of the Sixth International Workshop on Machine Learning, 113-118. doi:10.1016/b978-1-55860-036-2.50037-0 es_ES
dc.description.references Muggleton, S., & de Raedt, L. (1994). Inductive Logic Programming: Theory and methods. The Journal of Logic Programming, 19-20, 629-679. doi:10.1016/0743-1066(94)90035-3 es_ES
dc.description.references Quiroga, R. Q. (2012). Concept cells: the building blocks of declarative memory functions. Nature Reviews Neuroscience, 13(8), 587-597. doi:10.1038/nrn3251 es_ES
dc.description.references Raducanu, B., & Vitrià, J. (2008). Learning to learn: From smart machines to intelligent machines. Pattern Recognition Letters, 29(8), 1024-1032. doi:10.1016/j.patrec.2007.09.003 es_ES
dc.description.references Rissanen, J. (1999). Hypothesis Selection and Testing by the MDL Principle. The Computer Journal, 42(4), 260-269. doi:10.1093/comjnl/42.4.260 es_ES
dc.description.references Shannon, C. E. (1949). Communication Theory of Secrecy Systems*. Bell System Technical Journal, 28(4), 656-715. doi:10.1002/j.1538-7305.1949.tb00928.x es_ES
dc.description.references Shastri, L. (2001). Biological Grounding of Recruitment Learning and Vicinal Algorithms in Long-Term Potentiation. Lecture Notes in Computer Science, 348-367. doi:10.1007/3-540-44597-8_26 es_ES
dc.description.references Su, K., Sattar, A., Lv, G., & Zhang, Y. (2009). Variable Forgetting in Reasoning about Knowledge. Journal of Artificial Intelligence Research, 35, 677-716. doi:10.1613/jair.2750 es_ES
dc.description.references Wallace, C. S., & Boulton, D. M. (1968). An Information Measure for Classification. The Computer Journal, 11(2), 185-194. doi:10.1093/comjnl/11.2.185 es_ES
dc.description.references Wallace, C. S. (1999). Refinements of MDL and MML Coding. The Computer Journal, 42(4), 330-337. doi:10.1093/comjnl/42.4.330 es_ES
dc.description.references Wang, Z., Wang, K., Topor, R., & Pan, J. Z. (2010). Forgetting for knowledge bases in DL-Lite. Annals of Mathematics and Artificial Intelligence, 58(1-2), 117-151. doi:10.1007/s10472-010-9187-9 es_ES
dc.description.references Wixted, J. T. (2004). The Psychology and Neuroscience of Forgetting. Annual Review of Psychology, 55(1), 235-269. doi:10.1146/annurev.psych.55.090902.141555 es_ES
dc.description.references Wood, R., Baxter, P., & Belpaeme, T. (2011). A review of long-term memory in natural and synthetic systems. Adaptive Behavior, 20(2), 81-103. doi:10.1177/1059712311421219 es_ES
dc.description.references Zhang, Y., & Foo, N. Y. (2006). Solving logic program conflict through strong and weak forgettings. Artificial Intelligence, 170(8-9), 739-778. doi:10.1016/j.artint.2006.02.002 es_ES
dc.description.references Zhang, Y., & Zhou, Y. (2009). Knowledge forgetting: Properties and applications. Artificial Intelligence, 173(16-17), 1525-1537. doi:10.1016/j.artint.2009.07.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem