- -

Binarised regression tasks: methods and evaluation metrics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Binarised regression tasks: methods and evaluation metrics

Show full item record

Hernández Orallo, J.; Ferri Ramírez, C.; Lachiche, N.; Martínez Usó, A.; Ramírez Quintana, MJ. (2015). Binarised regression tasks: methods and evaluation metrics. Data Mining and Knowledge Discovery. 1-43. doi:10.1007/s10618-015-0443-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63549

Files in this item

Item Metadata

Title: Binarised regression tasks: methods and evaluation metrics
Author: Hernández Orallo, José Ferri Ramírez, César Lachiche, Nicolas Martínez Usó, Adolfo Ramírez Quintana, María José
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
Some supervised tasks are presented with a numerical output but decisions have to be made in a discrete, binarised, way, according to a particular cutoff. This binarised regression task is a very common situation that ...[+]
Subjects: Regression , Classification , Reframinng , Mean absolute error , Cutoff , Binarisation
Copyrigths: Reserva de todos los derechos
Source:
Data Mining and Knowledge Discovery. (issn: 1384-5810 )
DOI: 10.1007/s10618-015-0443-9
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.1007/s10618-015-0443-9
Project ID:
Spanish MINECO/ TIN 2013-45732-C4- 1-P
Generalitat Valenciana/ PROMETEOII2015/013
REFRAME projec / CHIST-ERA
Ministerio de Economía y Competitividad in Spain/ PCIN-2013-037
Agence Nationale pour la Recherche in France /ANR-12-CHRI-0005-03
Description: “The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10618-015-0443-9"
Thanks:
We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. We thank Peter Flach and Meelis Kull for their insightful comments and very useful suggestions. This work was ...[+]
Type: Artículo

References

Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2014) Aggregative quantification for regression. Data Min Knowl Discov 28(2):475–518

Bi J, Bennett KP (2003) Regression error characteristic curves. In: Twentieth international conference on machine learning (ICML-2003). Washington, DC [+]
Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2014) Aggregative quantification for regression. Data Min Knowl Discov 28(2):475–518

Bi J, Bennett KP (2003) Regression error characteristic curves. In: Twentieth international conference on machine learning (ICML-2003). Washington, DC

Brooks AD (2007) knnflex: a more flexible KNN. R package version 1.1.1

Cohen I, Goldszmidt M (2004) Properties and benefits of calibrated classifiers. Knowl Discov Database 2004:125–136

Drummond C, Holte R (2000) Explicitly representing expected cost: an alternative to ROC representation. In: Knowledge discovery and data mining, pp 198–207

Drummond C, Holte R (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65:95–130

Fawcett T (2006) ROC graphs with instance-varying costs. Pattern Recognit Lett 27(8):882–891

Fawcett T, Provost F (1997) Adaptive fraud detection. Data Min Knowl Discov 1(3):291–316

Federal Financial Institutions Examination Council (2013) Home mortgage disclosure act (HMDA). http://www.ffiec.gov/hmda/

Ferri C, Hernández-Orallo J (2004) Cautious classifiers. In: Proceedings of the 1st international workshop on ROC analysis in artificial intelligence (ROCAI-2004), pp 27–36

Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30(1):27–38

Flach P (2003) The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In: Machine learning, proceedings of the twentieth international conference (ICML 2003), pp 194–201

Guo Y, Schuurmans D (2008) Discriminative batch mode active learning. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. Curran Associates, Inc, pp 593–600

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer New York Inc., New York

Hernández-Orallo J (2013) ROC curves for regression. Pattern Recognit 46(12):3395–3411

Hernández-Orallo J (2014) Probabilistic reframing for context-sensitive regression. ACM Trans Knowl Discov Data 8(3)

Hernández-Orallo J, Flach P, Ferri C (2012) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res (JMLR) 13:2813–2869

Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets Weka. Comput Stat 24(2):225–232. doi: 10.1007/s00180-008-0119-7

Hsu CN, Knoblock CA (1998) Discovering robust knowledge from databases that change. Data Min Knowl Discov 2(1):69–95

Kocjan E, Kononenko I (2009) Regression as cost-sensitive classification. In: International multiconference on information society, pp 38–41

Koenker R (2005) Quantile regression, vol 38. Cambridge University Press, Cambridge

Langford J, Oliveira R, Zadrozny B (2012) Predicting conditional quantiles via reduction to classification. arXiv:1206.6860

Langford J, Zadrozny B (2005) Estimating class membership probabilities using classifier learners. In: Proceedings of the tenth international workshop on artificial intelligence and statistics (AISTAT05), pp 198–205

Martin A, Doddington G, Kamm T, Ordowski M, Przybocki M (1997) The DET curve in assessment of detection task performance. In: Fifth european conference on speech communication and technology. Citeseer

Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

Piatetsky-Shapiro G, Masand B (1999) Estimating campaign benefits and modeling lift. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, p 193

Pietraszek T (2007) On the use of ROC analysis for the optimization of abstaining classifiers. Mach Learn 68(2):137–169

Prati RC, Batista GE, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23:1601–1618. doi: 10.1109/TKDE.2011.59

Rosset S, Perlich C, Zadrozny B (2007) Ranking-based evaluation of regression models. Knowl Inf Syst 12(3):331–353

Sammut C, Webb G (2011) Encyclopedia of machine learning. Encyclopedia of machine learning. Springer, New York

Swets JA, Dawes RM, Monahan J (2000) Better decisions through science. Sci Am 283(4):82–87

Torgo L (2005) Regression error characteristic surfaces. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. ACM, pp 697–702

Torgo L, Gama J (1996) Regression by classification. In: Advances in artificial intelligence. Springer, pp 51–60

The keel-dataset repository (2002). http://www.keel.es/

Yang Y, Wu X, Zhu X (2006) Mining in anticipation for concept change: proactive-reactive prediction in data streams. Data Min Knowl Discov 13(3):261–289

Zillow (2013) Zillow API. http://www.zillow.com/howto/api/APIOverview.htm

[-]

This item appears in the following Collection(s)

Show full item record