Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2014) Aggregative quantification for regression. Data Min Knowl Discov 28(2):475–518
Bi J, Bennett KP (2003) Regression error characteristic curves. In: Twentieth international conference on machine learning (ICML-2003). Washington, DC
[+]
Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2014) Aggregative quantification for regression. Data Min Knowl Discov 28(2):475–518
Bi J, Bennett KP (2003) Regression error characteristic curves. In: Twentieth international conference on machine learning (ICML-2003). Washington, DC
Brooks AD (2007) knnflex: a more flexible KNN. R package version 1.1.1
Cohen I, Goldszmidt M (2004) Properties and benefits of calibrated classifiers. Knowl Discov Database 2004:125–136
Drummond C, Holte R (2000) Explicitly representing expected cost: an alternative to ROC representation. In: Knowledge discovery and data mining, pp 198–207
Drummond C, Holte R (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65:95–130
Fawcett T (2006) ROC graphs with instance-varying costs. Pattern Recognit Lett 27(8):882–891
Fawcett T, Provost F (1997) Adaptive fraud detection. Data Min Knowl Discov 1(3):291–316
Federal Financial Institutions Examination Council (2013) Home mortgage disclosure act (HMDA). http://www.ffiec.gov/hmda/
Ferri C, Hernández-Orallo J (2004) Cautious classifiers. In: Proceedings of the 1st international workshop on ROC analysis in artificial intelligence (ROCAI-2004), pp 27–36
Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30(1):27–38
Flach P (2003) The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In: Machine learning, proceedings of the twentieth international conference (ICML 2003), pp 194–201
Guo Y, Schuurmans D (2008) Discriminative batch mode active learning. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. Curran Associates, Inc, pp 593–600
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18
Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer New York Inc., New York
Hernández-Orallo J (2013) ROC curves for regression. Pattern Recognit 46(12):3395–3411
Hernández-Orallo J (2014) Probabilistic reframing for context-sensitive regression. ACM Trans Knowl Discov Data 8(3)
Hernández-Orallo J, Flach P, Ferri C (2012) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res (JMLR) 13:2813–2869
Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets Weka. Comput Stat 24(2):225–232. doi: 10.1007/s00180-008-0119-7
Hsu CN, Knoblock CA (1998) Discovering robust knowledge from databases that change. Data Min Knowl Discov 2(1):69–95
Kocjan E, Kononenko I (2009) Regression as cost-sensitive classification. In: International multiconference on information society, pp 38–41
Koenker R (2005) Quantile regression, vol 38. Cambridge University Press, Cambridge
Langford J, Oliveira R, Zadrozny B (2012) Predicting conditional quantiles via reduction to classification. arXiv:1206.6860
Langford J, Zadrozny B (2005) Estimating class membership probabilities using classifier learners. In: Proceedings of the tenth international workshop on artificial intelligence and statistics (AISTAT05), pp 198–205
Martin A, Doddington G, Kamm T, Ordowski M, Przybocki M (1997) The DET curve in assessment of detection task performance. In: Fifth european conference on speech communication and technology. Citeseer
Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
Piatetsky-Shapiro G, Masand B (1999) Estimating campaign benefits and modeling lift. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, p 193
Pietraszek T (2007) On the use of ROC analysis for the optimization of abstaining classifiers. Mach Learn 68(2):137–169
Prati RC, Batista GE, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23:1601–1618. doi: 10.1109/TKDE.2011.59
Rosset S, Perlich C, Zadrozny B (2007) Ranking-based evaluation of regression models. Knowl Inf Syst 12(3):331–353
Sammut C, Webb G (2011) Encyclopedia of machine learning. Encyclopedia of machine learning. Springer, New York
Swets JA, Dawes RM, Monahan J (2000) Better decisions through science. Sci Am 283(4):82–87
Torgo L (2005) Regression error characteristic surfaces. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. ACM, pp 697–702
Torgo L, Gama J (1996) Regression by classification. In: Advances in artificial intelligence. Springer, pp 51–60
The keel-dataset repository (2002). http://www.keel.es/
Yang Y, Wu X, Zhu X (2006) Mining in anticipation for concept change: proactive-reactive prediction in data streams. Data Min Knowl Discov 13(3):261–289
Zillow (2013) Zillow API. http://www.zillow.com/howto/api/APIOverview.htm
[-]