Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández Orallo, José | es_ES |
dc.contributor.author | Ferri Ramírez, César | es_ES |
dc.contributor.author | Lachiche, Nicolas | es_ES |
dc.contributor.author | Martínez Usó, Adolfo | es_ES |
dc.contributor.author | Ramírez Quintana, María José | es_ES |
dc.date.accessioned | 2016-05-04T11:45:23Z | |
dc.date.available | 2016-05-04T11:45:23Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 1384-5810 | |
dc.identifier.uri | http://hdl.handle.net/10251/63549 | |
dc.description | “The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10618-015-0443-9" | es_ES |
dc.description.abstract | Some supervised tasks are presented with a numerical output but decisions have to be made in a discrete, binarised, way, according to a particular cutoff. This binarised regression task is a very common situation that requires its own analysis, different from regression and classification—and ordinal regression. We first investigate the application cases in terms of the information about the distribution and range of the cutoffs and distinguish six possible scenarios, some of which are more common than others. Next, we study two basic approaches: the retraining approach, which discretises the training set whenever the cutoff is available and learns a new classifier from it, and the reframing approach, which learns a regression model and sets the cutoff when this is available during deployment. In order to assess the binarised regression task, we introduce context plots featuring error against cutoff. Two special cases are of interest, the UCEUCE and OCEOCE curves, showing that the area under the former is the mean absolute error and the latter is a new metric that is in between a ranking measure and a residual-based measure. A comprehensive evaluation of the retraining and reframing approaches is performed using a repository of binarised regression problems created on purpose, concluding that no method is clearly better than the other, except when the size of the training data is small. | es_ES |
dc.description.sponsorship | We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. We thank Peter Flach and Meelis Kull for their insightful comments and very useful suggestions. This work was supported by the Spanish MINECO under Grant TIN 2013-45732-C4-1-P and by Generalitat Valenciana PROMETEOII2015/013. This research has been developed within the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037) and the Agence Nationale pour la Recherche in France (ANR-12-CHRI-0005-03). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Data Mining and Knowledge Discovery | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Regression | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Reframinng | es_ES |
dc.subject | Mean absolute error | es_ES |
dc.subject | Cutoff | es_ES |
dc.subject | Binarisation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Binarised regression tasks: methods and evaluation metrics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10618-015-0443-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-45732-C4-1-P/ES/UNA APROXIMACION DECLARATIVA AL MODELADO, ANALISIS Y RESOLUCION DE PROBLEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CHIST-ERA//CHIST-ERA-2011/EU/Rethinking the Essence, Flexibility and Reusability of Advanced Model Exploitation/REFRAME/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-12-CHRI-0005/FR/Repenser l'essence, la flexibilité et la réutilisabilité de l'exploitation de modèles avancés)/REFRAME/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PCIN-2013-037/ES/RETHINKING THE ESSENCE, FLEXIBILITY AND REUSABILITY OF ADVANCED MODEL EXPLOITATION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Hernández Orallo, J.; Ferri Ramírez, C.; Lachiche, N.; Martínez Usó, A.; Ramírez Quintana, MJ. (2015). Binarised regression tasks: methods and evaluation metrics. Data Mining and Knowledge Discovery. 1-43. https://doi.org/10.1007/s10618-015-0443-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s10618-015-0443-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 43 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 302244 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml | es_ES |
dc.description.references | Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2014) Aggregative quantification for regression. Data Min Knowl Discov 28(2):475–518 | es_ES |
dc.description.references | Bi J, Bennett KP (2003) Regression error characteristic curves. In: Twentieth international conference on machine learning (ICML-2003). Washington, DC | es_ES |
dc.description.references | Brooks AD (2007) knnflex: a more flexible KNN. R package version 1.1.1 | es_ES |
dc.description.references | Cohen I, Goldszmidt M (2004) Properties and benefits of calibrated classifiers. Knowl Discov Database 2004:125–136 | es_ES |
dc.description.references | Drummond C, Holte R (2000) Explicitly representing expected cost: an alternative to ROC representation. In: Knowledge discovery and data mining, pp 198–207 | es_ES |
dc.description.references | Drummond C, Holte R (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65:95–130 | es_ES |
dc.description.references | Fawcett T (2006) ROC graphs with instance-varying costs. Pattern Recognit Lett 27(8):882–891 | es_ES |
dc.description.references | Fawcett T, Provost F (1997) Adaptive fraud detection. Data Min Knowl Discov 1(3):291–316 | es_ES |
dc.description.references | Federal Financial Institutions Examination Council (2013) Home mortgage disclosure act (HMDA). http://www.ffiec.gov/hmda/ | es_ES |
dc.description.references | Ferri C, Hernández-Orallo J (2004) Cautious classifiers. In: Proceedings of the 1st international workshop on ROC analysis in artificial intelligence (ROCAI-2004), pp 27–36 | es_ES |
dc.description.references | Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30(1):27–38 | es_ES |
dc.description.references | Flach P (2003) The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In: Machine learning, proceedings of the twentieth international conference (ICML 2003), pp 194–201 | es_ES |
dc.description.references | Guo Y, Schuurmans D (2008) Discriminative batch mode active learning. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. Curran Associates, Inc, pp 593–600 | es_ES |
dc.description.references | Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18 | es_ES |
dc.description.references | Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer New York Inc., New York | es_ES |
dc.description.references | Hernández-Orallo J (2013) ROC curves for regression. Pattern Recognit 46(12):3395–3411 | es_ES |
dc.description.references | Hernández-Orallo J (2014) Probabilistic reframing for context-sensitive regression. ACM Trans Knowl Discov Data 8(3) | es_ES |
dc.description.references | Hernández-Orallo J, Flach P, Ferri C (2012) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res (JMLR) 13:2813–2869 | es_ES |
dc.description.references | Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets Weka. Comput Stat 24(2):225–232. doi: 10.1007/s00180-008-0119-7 | es_ES |
dc.description.references | Hsu CN, Knoblock CA (1998) Discovering robust knowledge from databases that change. Data Min Knowl Discov 2(1):69–95 | es_ES |
dc.description.references | Kocjan E, Kononenko I (2009) Regression as cost-sensitive classification. In: International multiconference on information society, pp 38–41 | es_ES |
dc.description.references | Koenker R (2005) Quantile regression, vol 38. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Langford J, Oliveira R, Zadrozny B (2012) Predicting conditional quantiles via reduction to classification. arXiv:1206.6860 | es_ES |
dc.description.references | Langford J, Zadrozny B (2005) Estimating class membership probabilities using classifier learners. In: Proceedings of the tenth international workshop on artificial intelligence and statistics (AISTAT05), pp 198–205 | es_ES |
dc.description.references | Martin A, Doddington G, Kamm T, Ordowski M, Przybocki M (1997) The DET curve in assessment of detection task performance. In: Fifth european conference on speech communication and technology. Citeseer | es_ES |
dc.description.references | Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359 | es_ES |
dc.description.references | Piatetsky-Shapiro G, Masand B (1999) Estimating campaign benefits and modeling lift. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, p 193 | es_ES |
dc.description.references | Pietraszek T (2007) On the use of ROC analysis for the optimization of abstaining classifiers. Mach Learn 68(2):137–169 | es_ES |
dc.description.references | Prati RC, Batista GE, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23:1601–1618. doi: 10.1109/TKDE.2011.59 | es_ES |
dc.description.references | Rosset S, Perlich C, Zadrozny B (2007) Ranking-based evaluation of regression models. Knowl Inf Syst 12(3):331–353 | es_ES |
dc.description.references | Sammut C, Webb G (2011) Encyclopedia of machine learning. Encyclopedia of machine learning. Springer, New York | es_ES |
dc.description.references | Swets JA, Dawes RM, Monahan J (2000) Better decisions through science. Sci Am 283(4):82–87 | es_ES |
dc.description.references | Torgo L (2005) Regression error characteristic surfaces. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. ACM, pp 697–702 | es_ES |
dc.description.references | Torgo L, Gama J (1996) Regression by classification. In: Advances in artificial intelligence. Springer, pp 51–60 | es_ES |
dc.description.references | The keel-dataset repository (2002). http://www.keel.es/ | es_ES |
dc.description.references | Yang Y, Wu X, Zhu X (2006) Mining in anticipation for concept change: proactive-reactive prediction in data streams. Data Min Knowl Discov 13(3):261–289 | es_ES |
dc.description.references | Zillow (2013) Zillow API. http://www.zillow.com/howto/api/APIOverview.htm | es_ES |