- -

Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments

Mostrar el registro completo del ítem

Parra Boronat, L.; Sendra, S.; Lloret, J.; Bosch Roig, I. (2015). Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments. Sensors. 15(9):20990-21015. doi:10.3390/s150920990

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63707

Ficheros en el ítem

Metadatos del ítem

Título: Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments
Autor: Parra Boronat, Lorena Sendra, Sandra Lloret, Jaime Bosch Roig, Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
The main aim of smart cities is achieving sustainable resources. In order to make a correct use of resources, an accurate monitoring and management of them are needed. In some places, like underground aquifers, the access ...[+]
Palabras clave: Conductivity sensor , Groundwater monitoring , Water management , Smart City , Saline intrusion , Solenoid coils
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s150920990
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s150920990
Tipo: Artículo

References

Smart Citieshttps://ec.europa.eu/digital-agenda/en/smart-cities

Lazaroiu, G. C., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326-332. doi:10.1016/j.energy.2012.09.028

Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities – Exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 52-62. doi:10.1016/j.envsoft.2013.12.019 [+]
Smart Citieshttps://ec.europa.eu/digital-agenda/en/smart-cities

Lazaroiu, G. C., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326-332. doi:10.1016/j.energy.2012.09.028

Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities – Exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 52-62. doi:10.1016/j.envsoft.2013.12.019

Leccese, F. (2013). Remote-Control System of High Efficiency and Intelligent Street Lighting Using a ZigBee Network of Devices and Sensors. IEEE Transactions on Power Delivery, 28(1), 21-28. doi:10.1109/tpwrd.2012.2212215

Leccese, F., Cagnetti, M., & Trinca, D. (2014). A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors, 14(12), 24408-24424. doi:10.3390/s141224408

Elejoste, P., Angulo, I., Perallos, A., Chertudi, A., Zuazola, I., Moreno, A., … Villadangos, J. (2013). An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology. Sensors, 13(5), 6492-6523. doi:10.3390/s130506492

McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revenga, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312-6317. doi:10.1073/pnas.1011615108

World Population Prospects. The 2010 Revisionhttp://esa.un.org/Wpp/Documentation/pdf/WPP2010_Volume-I_Comprehensive-Tables.pdf

Groundwater Use for Americahttp://www.ngwa.org/Documents/Awareness/usfactsheet.pdf

Owen, D. (2013). Taking Groundwater. SSRN Electronic Journal. doi:10.2139/ssrn.2217770

Milnes, E. (2011). Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). Journal of Hydrology, 399(1-2), 29-47. doi:10.1016/j.jhydrol.2010.12.032

Chang, S. W., Clement, T. P., Simpson, M. J., & Lee, K.-K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10), 1283-1291. doi:10.1016/j.advwatres.2011.06.006

Barron, O. V., Barr, A. D., & Donn, M. J. (2013). Effect of urbanisation on the water balance of a catchment with shallow groundwater. Journal of Hydrology, 485, 162-176. doi:10.1016/j.jhydrol.2012.04.027

Hayashi, T., Tokunaga, T., Aichi, M., Shimada, J., & Taniguchi, M. (2009). Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Science of The Total Environment, 407(9), 3165-3172. doi:10.1016/j.scitotenv.2008.07.012

Padowski, J. C., & Gorelick, S. M. (2014). Global analysis of urban surface water supply vulnerability. Environmental Research Letters, 9(10), 104004. doi:10.1088/1748-9326/9/10/104004

Intl ESRI Datahttp://www.baruch.cuny.edu/geoportal/data/esri/esri_intl.htm#world

Foster, S. S. . (2001). The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water, 3(3), 185-192. doi:10.1016/s1462-0758(01)00043-7

Park, S.-C., Yun, S.-T., Chae, G.-T., Yoo, I.-S., Shin, K.-S., Heo, C.-H., & Lee, S.-K. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3-4), 182-194. doi:10.1016/j.jhydrol.2005.03.001

D’Alessandro, W., Bellomo, S., Bonfanti, P., Brusca, L., & Longo, M. (2010). Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): natural vs. anthropogenic causes. Environmental Monitoring and Assessment, 173(1-4), 431-446. doi:10.1007/s10661-010-1397-4

Chaudhuri, S., & Ale, S. (2014). Long term (1960–2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. Journal of Hydrology, 513, 376-390. doi:10.1016/j.jhydrol.2014.03.033

Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environmental Geology, 48(6), 665-675. doi:10.1007/s00254-005-0001-7

Ghiglieri, G., Carletti, A., & Pittalis, D. (2012). Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). Journal of Hydrology, 432-433, 43-51. doi:10.1016/j.jhydrol.2012.02.016

El Yaouti, F., El Mandour, A., Khattach, D., Benavente, J., & Kaufmann, O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Applied Geochemistry, 24(1), 16-31. doi:10.1016/j.apgeochem.2008.10.005

De Montety, V., Radakovitch, O., Vallet-Coulomb, C., Blavoux, B., Hermitte, D., & Valles, V. (2008). Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Applied Geochemistry, 23(8), 2337-2349. doi:10.1016/j.apgeochem.2008.03.011

Petalas, C., Pisinaras, V., Gemitzi, A., Tsihrintzis, V. A., & Ouzounis, K. (2009). Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece. Desalination, 237(1-3), 22-41. doi:10.1016/j.desal.2007.12.020

Demirel, Z. (2004). The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. Journal of Environmental Management, 70(3), 275-282. doi:10.1016/j.jenvman.2003.12.007

Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1-4), 178-192. doi:10.1016/j.jhydrol.2005.08.023

Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., … Woo, N.-C. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270(3-4), 282-294. doi:10.1016/s0022-1694(02)00307-4

Cardona, A., Carrillo-Rivera, J. J., Huizar-�lvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45(3), 350-366. doi:10.1007/s00254-003-0874-2

Subba Rao, N. (2007). Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138(1-3), 327-341. doi:10.1007/s10661-007-9801-4

Johansson, O., Aimbetov, I., & Jarsjö, J. (2009). Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. Journal of Marine Systems, 76(3), 287-295. doi:10.1016/j.jmarsys.2008.03.017

Zhao, Y., Zhang, B., & Liao, Y. (2003). Experimental research and analysis of salinity measurement based on optical techniques. Sensors and Actuators B: Chemical, 92(3), 331-336. doi:10.1016/s0925-4005(03)00292-2

Wang, J., & Chen, B. (2012). Experimental research of optical fiber sensor for salinity measurement. Sensors and Actuators A: Physical, 184, 53-56. doi:10.1016/j.sna.2012.06.028

Guzman-Sepulveda, J. R., Ruiz-Perez, V. I., Torres-Cisneros, M., Sanchez-Mondragon, J. J., & May-Arrioja, D. A. (2013). Fiber Optic Sensor for High-Sensitivity Salinity Measurement. IEEE Photonics Technology Letters, 25(23), 2323-2326. doi:10.1109/lpt.2013.2286132

Striggow, K., & Dankert, R. (1985). The exact theory of inductive conductivity sensors for oceanographic application. IEEE Journal of Oceanic Engineering, 10(2), 175-179. doi:10.1109/joe.1985.1145085

Ramos, P. M., Pereira, J. M. D., Ramos, H. M. G., & Ribeiro, A. L. (2008). A Four-Terminal Water-Quality-Monitoring Conductivity Sensor. IEEE Transactions on Instrumentation and Measurement, 57(3), 577-583. doi:10.1109/tim.2007.911703

Laugere, F., Lubking, G. W., Bastemeijer, J., & Vellekoop, M. J. (2002). Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sensors and Actuators B: Chemical, 83(1-3), 104-108. doi:10.1016/s0925-4005(01)01051-6

Kim, M., Choi, W., Lim, H., & Yang, S. (2013). Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination, 317, 166-174. doi:10.1016/j.desal.2013.03.007

Huang, X., Pascal, R. W., Chamberlain, K., Banks, C. J., Mowlem, M., & Morgan, H. (2011). A Miniature, High Precision Conductivity and Temperature Sensor System for Ocean Monitoring. IEEE Sensors Journal, 11(12), 3246-3252. doi:10.1109/jsen.2011.2149516

Herzog, G., Moujahid, W., Twomey, K., Lyons, C., & Ogurtsov, V. I. (2013). On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta, 116, 26-32. doi:10.1016/j.talanta.2013.04.057

Banna, M. H., Najjaran, H., Sadiq, R., Imran, S. A., Rodriguez, M. J., & Hoorfar, M. (2014). Miniaturized water quality monitoring pH and conductivity sensors. Sensors and Actuators B: Chemical, 193, 434-441. doi:10.1016/j.snb.2013.12.002

Eureqa Softwarehttp://www.nutonian.com/products/eureqa/

Sreekanth, J., & Datta, B. (2014). Design of an Optimal Compliance Monitoring Network and Feedback Information for Adaptive Management of Saltwater Intrusion in Coastal Aquifers. Journal of Water Resources Planning and Management, 140(10), 04014026. doi:10.1061/(asce)wr.1943-5452.0000406

EL Mamoune, S., Ezziyyani, M., & Lloret, J. (2015). Towards a New Approach for Modelling Interactive Real Time Systems Based on Collaborative Decisions Network. Network Protocols and Algorithms, 7(1), 42. doi:10.5296/npa.v7i1.7257

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem