Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Boronat, Lorena | es_ES |
dc.contributor.author | Sendra, Sandra | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Bosch Roig, Ignacio | es_ES |
dc.date.accessioned | 2016-05-05T14:28:34Z | |
dc.date.available | 2016-05-05T14:28:34Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/63707 | |
dc.description.abstract | The main aim of smart cities is achieving sustainable resources. In order to make a correct use of resources, an accurate monitoring and management of them are needed. In some places, like underground aquifers, the access for monitoring can be hard therefore the use of sensors can be a good solution. The groundwater is very important as a water resource, just in USA, aquifers suppose the water resource for 50% of population. However, its importance aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity. High salinity level indicates groundwater salinization. In this paper we present a specific sensor for groundwater salinization monitoring. The sensor is able to measure the electric conductivity of water, i.e., higher electric conductivity means higher water salinization. The sensor, which is composed of two copper coils, measures the alterations in magnetic fields due to the presence of electric charges in water. Different salinities in water generate different alterations. Our sensor is undergone to several tests performed in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best coils combination. When the best prototype is selected, it is calibrated using up to 30 different samples. Our Conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the needs. With this work, we have demonstrated that it is feasible of measuring water conductivity using solenoids coils and its application for groundwater monitoring. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Conductivity sensor | es_ES |
dc.subject | Groundwater monitoring | es_ES |
dc.subject | Water management | es_ES |
dc.subject | Smart City | es_ES |
dc.subject | Saline intrusion | es_ES |
dc.subject | Solenoid coils | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s150920990 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Parra Boronat, L.; Sendra, S.; Lloret, J.; Bosch Roig, I. (2015). Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments. Sensors. 15(9):20990-21015. doi:10.3390/s150920990 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s150920990 | es_ES |
dc.description.upvformatpinicio | 20990 | es_ES |
dc.description.upvformatpfin | 21015 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 308036 | es_ES |
dc.identifier.pmid | 26343653 | en_EN |
dc.identifier.pmcid | PMC4610579 | en_EN |
dc.description.references | Smart Citieshttps://ec.europa.eu/digital-agenda/en/smart-cities | es_ES |
dc.description.references | Lazaroiu, G. C., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326-332. doi:10.1016/j.energy.2012.09.028 | es_ES |
dc.description.references | Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities – Exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 52-62. doi:10.1016/j.envsoft.2013.12.019 | es_ES |
dc.description.references | Leccese, F. (2013). Remote-Control System of High Efficiency and Intelligent Street Lighting Using a ZigBee Network of Devices and Sensors. IEEE Transactions on Power Delivery, 28(1), 21-28. doi:10.1109/tpwrd.2012.2212215 | es_ES |
dc.description.references | Leccese, F., Cagnetti, M., & Trinca, D. (2014). A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors, 14(12), 24408-24424. doi:10.3390/s141224408 | es_ES |
dc.description.references | Elejoste, P., Angulo, I., Perallos, A., Chertudi, A., Zuazola, I., Moreno, A., … Villadangos, J. (2013). An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology. Sensors, 13(5), 6492-6523. doi:10.3390/s130506492 | es_ES |
dc.description.references | McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revenga, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312-6317. doi:10.1073/pnas.1011615108 | es_ES |
dc.description.references | World Population Prospects. The 2010 Revisionhttp://esa.un.org/Wpp/Documentation/pdf/WPP2010_Volume-I_Comprehensive-Tables.pdf | es_ES |
dc.description.references | Groundwater Use for Americahttp://www.ngwa.org/Documents/Awareness/usfactsheet.pdf | es_ES |
dc.description.references | Owen, D. (2013). Taking Groundwater. SSRN Electronic Journal. doi:10.2139/ssrn.2217770 | es_ES |
dc.description.references | Milnes, E. (2011). Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). Journal of Hydrology, 399(1-2), 29-47. doi:10.1016/j.jhydrol.2010.12.032 | es_ES |
dc.description.references | Chang, S. W., Clement, T. P., Simpson, M. J., & Lee, K.-K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10), 1283-1291. doi:10.1016/j.advwatres.2011.06.006 | es_ES |
dc.description.references | Barron, O. V., Barr, A. D., & Donn, M. J. (2013). Effect of urbanisation on the water balance of a catchment with shallow groundwater. Journal of Hydrology, 485, 162-176. doi:10.1016/j.jhydrol.2012.04.027 | es_ES |
dc.description.references | Hayashi, T., Tokunaga, T., Aichi, M., Shimada, J., & Taniguchi, M. (2009). Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Science of The Total Environment, 407(9), 3165-3172. doi:10.1016/j.scitotenv.2008.07.012 | es_ES |
dc.description.references | Padowski, J. C., & Gorelick, S. M. (2014). Global analysis of urban surface water supply vulnerability. Environmental Research Letters, 9(10), 104004. doi:10.1088/1748-9326/9/10/104004 | es_ES |
dc.description.references | Intl ESRI Datahttp://www.baruch.cuny.edu/geoportal/data/esri/esri_intl.htm#world | es_ES |
dc.description.references | Foster, S. S. . (2001). The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water, 3(3), 185-192. doi:10.1016/s1462-0758(01)00043-7 | es_ES |
dc.description.references | Park, S.-C., Yun, S.-T., Chae, G.-T., Yoo, I.-S., Shin, K.-S., Heo, C.-H., & Lee, S.-K. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3-4), 182-194. doi:10.1016/j.jhydrol.2005.03.001 | es_ES |
dc.description.references | D’Alessandro, W., Bellomo, S., Bonfanti, P., Brusca, L., & Longo, M. (2010). Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): natural vs. anthropogenic causes. Environmental Monitoring and Assessment, 173(1-4), 431-446. doi:10.1007/s10661-010-1397-4 | es_ES |
dc.description.references | Chaudhuri, S., & Ale, S. (2014). Long term (1960–2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. Journal of Hydrology, 513, 376-390. doi:10.1016/j.jhydrol.2014.03.033 | es_ES |
dc.description.references | Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environmental Geology, 48(6), 665-675. doi:10.1007/s00254-005-0001-7 | es_ES |
dc.description.references | Ghiglieri, G., Carletti, A., & Pittalis, D. (2012). Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). Journal of Hydrology, 432-433, 43-51. doi:10.1016/j.jhydrol.2012.02.016 | es_ES |
dc.description.references | El Yaouti, F., El Mandour, A., Khattach, D., Benavente, J., & Kaufmann, O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Applied Geochemistry, 24(1), 16-31. doi:10.1016/j.apgeochem.2008.10.005 | es_ES |
dc.description.references | De Montety, V., Radakovitch, O., Vallet-Coulomb, C., Blavoux, B., Hermitte, D., & Valles, V. (2008). Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Applied Geochemistry, 23(8), 2337-2349. doi:10.1016/j.apgeochem.2008.03.011 | es_ES |
dc.description.references | Petalas, C., Pisinaras, V., Gemitzi, A., Tsihrintzis, V. A., & Ouzounis, K. (2009). Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece. Desalination, 237(1-3), 22-41. doi:10.1016/j.desal.2007.12.020 | es_ES |
dc.description.references | Demirel, Z. (2004). The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. Journal of Environmental Management, 70(3), 275-282. doi:10.1016/j.jenvman.2003.12.007 | es_ES |
dc.description.references | Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1-4), 178-192. doi:10.1016/j.jhydrol.2005.08.023 | es_ES |
dc.description.references | Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., … Woo, N.-C. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270(3-4), 282-294. doi:10.1016/s0022-1694(02)00307-4 | es_ES |
dc.description.references | Cardona, A., Carrillo-Rivera, J. J., Huizar-�lvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45(3), 350-366. doi:10.1007/s00254-003-0874-2 | es_ES |
dc.description.references | Subba Rao, N. (2007). Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138(1-3), 327-341. doi:10.1007/s10661-007-9801-4 | es_ES |
dc.description.references | Johansson, O., Aimbetov, I., & Jarsjö, J. (2009). Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. Journal of Marine Systems, 76(3), 287-295. doi:10.1016/j.jmarsys.2008.03.017 | es_ES |
dc.description.references | Zhao, Y., Zhang, B., & Liao, Y. (2003). Experimental research and analysis of salinity measurement based on optical techniques. Sensors and Actuators B: Chemical, 92(3), 331-336. doi:10.1016/s0925-4005(03)00292-2 | es_ES |
dc.description.references | Wang, J., & Chen, B. (2012). Experimental research of optical fiber sensor for salinity measurement. Sensors and Actuators A: Physical, 184, 53-56. doi:10.1016/j.sna.2012.06.028 | es_ES |
dc.description.references | Guzman-Sepulveda, J. R., Ruiz-Perez, V. I., Torres-Cisneros, M., Sanchez-Mondragon, J. J., & May-Arrioja, D. A. (2013). Fiber Optic Sensor for High-Sensitivity Salinity Measurement. IEEE Photonics Technology Letters, 25(23), 2323-2326. doi:10.1109/lpt.2013.2286132 | es_ES |
dc.description.references | Striggow, K., & Dankert, R. (1985). The exact theory of inductive conductivity sensors for oceanographic application. IEEE Journal of Oceanic Engineering, 10(2), 175-179. doi:10.1109/joe.1985.1145085 | es_ES |
dc.description.references | Ramos, P. M., Pereira, J. M. D., Ramos, H. M. G., & Ribeiro, A. L. (2008). A Four-Terminal Water-Quality-Monitoring Conductivity Sensor. IEEE Transactions on Instrumentation and Measurement, 57(3), 577-583. doi:10.1109/tim.2007.911703 | es_ES |
dc.description.references | Laugere, F., Lubking, G. W., Bastemeijer, J., & Vellekoop, M. J. (2002). Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sensors and Actuators B: Chemical, 83(1-3), 104-108. doi:10.1016/s0925-4005(01)01051-6 | es_ES |
dc.description.references | Kim, M., Choi, W., Lim, H., & Yang, S. (2013). Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination, 317, 166-174. doi:10.1016/j.desal.2013.03.007 | es_ES |
dc.description.references | Huang, X., Pascal, R. W., Chamberlain, K., Banks, C. J., Mowlem, M., & Morgan, H. (2011). A Miniature, High Precision Conductivity and Temperature Sensor System for Ocean Monitoring. IEEE Sensors Journal, 11(12), 3246-3252. doi:10.1109/jsen.2011.2149516 | es_ES |
dc.description.references | Herzog, G., Moujahid, W., Twomey, K., Lyons, C., & Ogurtsov, V. I. (2013). On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta, 116, 26-32. doi:10.1016/j.talanta.2013.04.057 | es_ES |
dc.description.references | Banna, M. H., Najjaran, H., Sadiq, R., Imran, S. A., Rodriguez, M. J., & Hoorfar, M. (2014). Miniaturized water quality monitoring pH and conductivity sensors. Sensors and Actuators B: Chemical, 193, 434-441. doi:10.1016/j.snb.2013.12.002 | es_ES |
dc.description.references | Eureqa Softwarehttp://www.nutonian.com/products/eureqa/ | es_ES |
dc.description.references | Sreekanth, J., & Datta, B. (2014). Design of an Optimal Compliance Monitoring Network and Feedback Information for Adaptive Management of Saltwater Intrusion in Coastal Aquifers. Journal of Water Resources Planning and Management, 140(10), 04014026. doi:10.1061/(asce)wr.1943-5452.0000406 | es_ES |
dc.description.references | EL Mamoune, S., Ezziyyani, M., & Lloret, J. (2015). Towards a New Approach for Modelling Interactive Real Time Systems Based on Collaborative Decisions Network. Network Protocols and Algorithms, 7(1), 42. doi:10.5296/npa.v7i1.7257 | es_ES |