- -

Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra Boronat, Lorena es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Bosch Roig, Ignacio es_ES
dc.date.accessioned 2016-05-05T14:28:34Z
dc.date.available 2016-05-05T14:28:34Z
dc.date.issued 2015-09
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/63707
dc.description.abstract The main aim of smart cities is achieving sustainable resources. In order to make a correct use of resources, an accurate monitoring and management of them are needed. In some places, like underground aquifers, the access for monitoring can be hard therefore the use of sensors can be a good solution. The groundwater is very important as a water resource, just in USA, aquifers suppose the water resource for 50% of population. However, its importance aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity. High salinity level indicates groundwater salinization. In this paper we present a specific sensor for groundwater salinization monitoring. The sensor is able to measure the electric conductivity of water, i.e., higher electric conductivity means higher water salinization. The sensor, which is composed of two copper coils, measures the alterations in magnetic fields due to the presence of electric charges in water. Different salinities in water generate different alterations. Our sensor is undergone to several tests performed in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best coils combination. When the best prototype is selected, it is calibrated using up to 30 different samples. Our Conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the needs. With this work, we have demonstrated that it is feasible of measuring water conductivity using solenoids coils and its application for groundwater monitoring. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Conductivity sensor es_ES
dc.subject Groundwater monitoring es_ES
dc.subject Water management es_ES
dc.subject Smart City es_ES
dc.subject Saline intrusion es_ES
dc.subject Solenoid coils es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s150920990
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Parra Boronat, L.; Sendra, S.; Lloret, J.; Bosch Roig, I. (2015). Development and test of conductivity sensor for monitoring groundwater resources to optimize the water management in Smart City environments. Sensors. 15(9):20990-21015. doi:10.3390/s150920990 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s150920990 es_ES
dc.description.upvformatpinicio 20990 es_ES
dc.description.upvformatpfin 21015 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 308036 es_ES
dc.identifier.pmid 26343653 en_EN
dc.identifier.pmcid PMC4610579 en_EN
dc.description.references Smart Citieshttps://ec.europa.eu/digital-agenda/en/smart-cities es_ES
dc.description.references Lazaroiu, G. C., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326-332. doi:10.1016/j.energy.2012.09.028 es_ES
dc.description.references Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities – Exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 52-62. doi:10.1016/j.envsoft.2013.12.019 es_ES
dc.description.references Leccese, F. (2013). Remote-Control System of High Efficiency and Intelligent Street Lighting Using a ZigBee Network of Devices and Sensors. IEEE Transactions on Power Delivery, 28(1), 21-28. doi:10.1109/tpwrd.2012.2212215 es_ES
dc.description.references Leccese, F., Cagnetti, M., & Trinca, D. (2014). A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors, 14(12), 24408-24424. doi:10.3390/s141224408 es_ES
dc.description.references Elejoste, P., Angulo, I., Perallos, A., Chertudi, A., Zuazola, I., Moreno, A., … Villadangos, J. (2013). An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology. Sensors, 13(5), 6492-6523. doi:10.3390/s130506492 es_ES
dc.description.references McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revenga, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312-6317. doi:10.1073/pnas.1011615108 es_ES
dc.description.references World Population Prospects. The 2010 Revisionhttp://esa.un.org/Wpp/Documentation/pdf/WPP2010_Volume-I_Comprehensive-Tables.pdf es_ES
dc.description.references Groundwater Use for Americahttp://www.ngwa.org/Documents/Awareness/usfactsheet.pdf es_ES
dc.description.references Owen, D. (2013). Taking Groundwater. SSRN Electronic Journal. doi:10.2139/ssrn.2217770 es_ES
dc.description.references Milnes, E. (2011). Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). Journal of Hydrology, 399(1-2), 29-47. doi:10.1016/j.jhydrol.2010.12.032 es_ES
dc.description.references Chang, S. W., Clement, T. P., Simpson, M. J., & Lee, K.-K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10), 1283-1291. doi:10.1016/j.advwatres.2011.06.006 es_ES
dc.description.references Barron, O. V., Barr, A. D., & Donn, M. J. (2013). Effect of urbanisation on the water balance of a catchment with shallow groundwater. Journal of Hydrology, 485, 162-176. doi:10.1016/j.jhydrol.2012.04.027 es_ES
dc.description.references Hayashi, T., Tokunaga, T., Aichi, M., Shimada, J., & Taniguchi, M. (2009). Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Science of The Total Environment, 407(9), 3165-3172. doi:10.1016/j.scitotenv.2008.07.012 es_ES
dc.description.references Padowski, J. C., & Gorelick, S. M. (2014). Global analysis of urban surface water supply vulnerability. Environmental Research Letters, 9(10), 104004. doi:10.1088/1748-9326/9/10/104004 es_ES
dc.description.references Intl ESRI Datahttp://www.baruch.cuny.edu/geoportal/data/esri/esri_intl.htm#world es_ES
dc.description.references Foster, S. S. . (2001). The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water, 3(3), 185-192. doi:10.1016/s1462-0758(01)00043-7 es_ES
dc.description.references Park, S.-C., Yun, S.-T., Chae, G.-T., Yoo, I.-S., Shin, K.-S., Heo, C.-H., & Lee, S.-K. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3-4), 182-194. doi:10.1016/j.jhydrol.2005.03.001 es_ES
dc.description.references D’Alessandro, W., Bellomo, S., Bonfanti, P., Brusca, L., & Longo, M. (2010). Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): natural vs. anthropogenic causes. Environmental Monitoring and Assessment, 173(1-4), 431-446. doi:10.1007/s10661-010-1397-4 es_ES
dc.description.references Chaudhuri, S., & Ale, S. (2014). Long term (1960–2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. Journal of Hydrology, 513, 376-390. doi:10.1016/j.jhydrol.2014.03.033 es_ES
dc.description.references Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environmental Geology, 48(6), 665-675. doi:10.1007/s00254-005-0001-7 es_ES
dc.description.references Ghiglieri, G., Carletti, A., & Pittalis, D. (2012). Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). Journal of Hydrology, 432-433, 43-51. doi:10.1016/j.jhydrol.2012.02.016 es_ES
dc.description.references El Yaouti, F., El Mandour, A., Khattach, D., Benavente, J., & Kaufmann, O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Applied Geochemistry, 24(1), 16-31. doi:10.1016/j.apgeochem.2008.10.005 es_ES
dc.description.references De Montety, V., Radakovitch, O., Vallet-Coulomb, C., Blavoux, B., Hermitte, D., & Valles, V. (2008). Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Applied Geochemistry, 23(8), 2337-2349. doi:10.1016/j.apgeochem.2008.03.011 es_ES
dc.description.references Petalas, C., Pisinaras, V., Gemitzi, A., Tsihrintzis, V. A., & Ouzounis, K. (2009). Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece. Desalination, 237(1-3), 22-41. doi:10.1016/j.desal.2007.12.020 es_ES
dc.description.references Demirel, Z. (2004). The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. Journal of Environmental Management, 70(3), 275-282. doi:10.1016/j.jenvman.2003.12.007 es_ES
dc.description.references Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1-4), 178-192. doi:10.1016/j.jhydrol.2005.08.023 es_ES
dc.description.references Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., … Woo, N.-C. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270(3-4), 282-294. doi:10.1016/s0022-1694(02)00307-4 es_ES
dc.description.references Cardona, A., Carrillo-Rivera, J. J., Huizar-�lvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45(3), 350-366. doi:10.1007/s00254-003-0874-2 es_ES
dc.description.references Subba Rao, N. (2007). Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138(1-3), 327-341. doi:10.1007/s10661-007-9801-4 es_ES
dc.description.references Johansson, O., Aimbetov, I., & Jarsjö, J. (2009). Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. Journal of Marine Systems, 76(3), 287-295. doi:10.1016/j.jmarsys.2008.03.017 es_ES
dc.description.references Zhao, Y., Zhang, B., & Liao, Y. (2003). Experimental research and analysis of salinity measurement based on optical techniques. Sensors and Actuators B: Chemical, 92(3), 331-336. doi:10.1016/s0925-4005(03)00292-2 es_ES
dc.description.references Wang, J., & Chen, B. (2012). Experimental research of optical fiber sensor for salinity measurement. Sensors and Actuators A: Physical, 184, 53-56. doi:10.1016/j.sna.2012.06.028 es_ES
dc.description.references Guzman-Sepulveda, J. R., Ruiz-Perez, V. I., Torres-Cisneros, M., Sanchez-Mondragon, J. J., & May-Arrioja, D. A. (2013). Fiber Optic Sensor for High-Sensitivity Salinity Measurement. IEEE Photonics Technology Letters, 25(23), 2323-2326. doi:10.1109/lpt.2013.2286132 es_ES
dc.description.references Striggow, K., & Dankert, R. (1985). The exact theory of inductive conductivity sensors for oceanographic application. IEEE Journal of Oceanic Engineering, 10(2), 175-179. doi:10.1109/joe.1985.1145085 es_ES
dc.description.references Ramos, P. M., Pereira, J. M. D., Ramos, H. M. G., & Ribeiro, A. L. (2008). A Four-Terminal Water-Quality-Monitoring Conductivity Sensor. IEEE Transactions on Instrumentation and Measurement, 57(3), 577-583. doi:10.1109/tim.2007.911703 es_ES
dc.description.references Laugere, F., Lubking, G. W., Bastemeijer, J., & Vellekoop, M. J. (2002). Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sensors and Actuators B: Chemical, 83(1-3), 104-108. doi:10.1016/s0925-4005(01)01051-6 es_ES
dc.description.references Kim, M., Choi, W., Lim, H., & Yang, S. (2013). Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination, 317, 166-174. doi:10.1016/j.desal.2013.03.007 es_ES
dc.description.references Huang, X., Pascal, R. W., Chamberlain, K., Banks, C. J., Mowlem, M., & Morgan, H. (2011). A Miniature, High Precision Conductivity and Temperature Sensor System for Ocean Monitoring. IEEE Sensors Journal, 11(12), 3246-3252. doi:10.1109/jsen.2011.2149516 es_ES
dc.description.references Herzog, G., Moujahid, W., Twomey, K., Lyons, C., & Ogurtsov, V. I. (2013). On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta, 116, 26-32. doi:10.1016/j.talanta.2013.04.057 es_ES
dc.description.references Banna, M. H., Najjaran, H., Sadiq, R., Imran, S. A., Rodriguez, M. J., & Hoorfar, M. (2014). Miniaturized water quality monitoring pH and conductivity sensors. Sensors and Actuators B: Chemical, 193, 434-441. doi:10.1016/j.snb.2013.12.002 es_ES
dc.description.references Eureqa Softwarehttp://www.nutonian.com/products/eureqa/ es_ES
dc.description.references Sreekanth, J., & Datta, B. (2014). Design of an Optimal Compliance Monitoring Network and Feedback Information for Adaptive Management of Saltwater Intrusion in Coastal Aquifers. Journal of Water Resources Planning and Management, 140(10), 04014026. doi:10.1061/(asce)wr.1943-5452.0000406 es_ES
dc.description.references EL Mamoune, S., Ezziyyani, M., & Lloret, J. (2015). Towards a New Approach for Modelling Interactive Real Time Systems Based on Collaborative Decisions Network. Network Protocols and Algorithms, 7(1), 42. doi:10.5296/npa.v7i1.7257 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem