- -

Solvability of Nth Order Linear Boundary Value Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solvability of Nth Order Linear Boundary Value Problems

Mostrar el registro completo del ítem

Almenar, P.; Jódar Sánchez, LA. (2015). Solvability of Nth Order Linear Boundary Value Problems. International Journal of Differential Equations. 2015:1-19. https://doi.org/10.1155/2015/230405

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63711

Ficheros en el ítem

Metadatos del ítem

Título: Solvability of Nth Order Linear Boundary Value Problems
Autor: Almenar, Pedro Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
This paper presents a method that provides necessary and sufficient conditions for the existence of solutions of nth order linear boundary value problems. The method is based on the recursive application of a linear integral ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Differential Equations. (issn: 1687-9643 ) (eissn: 1687-9651 )
DOI: 10.1155/2015/230405
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2015/230405
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/
Descripción: Copyright © 2015 P. Almenar and L. Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Agradecimientos:
This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2013-41765-P.
Tipo: Artículo

References

Almenar, P., & Jódar, L. (2014). The Distance between Points of a Solution of a Second Order Linear Differential Equation Satisfying General Boundary Conditions. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/126713

Greguš, M. (1987). Third Order Linear Differential Equations. doi:10.1007/978-94-009-3715-4

Polya, G. (1922). On the Mean-Value Theorem Corresponding to a Given Linear Homogeneous Differential Equations. Transactions of the American Mathematical Society, 24(4), 312. doi:10.2307/1988819 [+]
Almenar, P., & Jódar, L. (2014). The Distance between Points of a Solution of a Second Order Linear Differential Equation Satisfying General Boundary Conditions. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/126713

Greguš, M. (1987). Third Order Linear Differential Equations. doi:10.1007/978-94-009-3715-4

Polya, G. (1922). On the Mean-Value Theorem Corresponding to a Given Linear Homogeneous Differential Equations. Transactions of the American Mathematical Society, 24(4), 312. doi:10.2307/1988819

Sherman, T. (1965). Properties of solutions ofn-th order linear differential equations. Pacific Journal of Mathematics, 15(3), 1045-1060. doi:10.2140/pjm.1965.15.1045

Muldowney, J. S. (1979). A Necessary and Sufficient Condition for Disfocality. Proceedings of the American Mathematical Society, 74(1), 49. doi:10.2307/2042104

Nehari, Z. (1967). Disconjugate Linear Differential Operators. Transactions of the American Mathematical Society, 129(3), 500. doi:10.2307/1994604

Ahmad, S., & Lazer, A. C. (1978). AnN-Dimensional Extension of the Sturm Separation and Comparison Theory to a Class of Nonselfadjoint Systems. SIAM Journal on Mathematical Analysis, 9(6), 1137-1150. doi:10.1137/0509092

Ahmad, S., & Lazer, A. C. (1980). On nth-order Sturmian theory. Journal of Differential Equations, 35(1), 87-112. doi:10.1016/0022-0396(80)90051-0

Elias, U. (1975). The extremal solutions of the equation Ly + p(x)y = 0. Journal of Mathematical Analysis and Applications, 50(3), 447-457. doi:10.1016/0022-247x(75)90001-3

Elias, U. (1977). Nonoscillation and Eventual Disconjugacy. Proceedings of the American Mathematical Society, 66(2), 269. doi:10.2307/2040944

Elias, U. (1978). Eigenvalue problems for the equation Ly + λp(x) y = 0. Journal of Differential Equations, 29(1), 28-57. doi:10.1016/0022-0396(78)90039-6

Deimling, K. (1985). Nonlinear Functional Analysis. doi:10.1007/978-3-662-00547-7

Gentry, R. D., & Travis, C. C. (1976). Comparison of Eigenvalues Associated With Linear Differential Equations of Arbitrary Order. Transactions of the American Mathematical Society, 223, 167. doi:10.2307/1997522

Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7

Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625

Tomastik, E. C. (1983). Comparison Theorems for Second Order Nonselfadjoint Differential Systems. SIAM Journal on Mathematical Analysis, 14(1), 60-65. doi:10.1137/0514005

Kreith, K. (1984). A class of hyperbolic focal point problems. Hiroshima Mathematical Journal, 14(1), 203-210. doi:10.32917/hmj/1206133155

Hankerson, D., & Peterson, A. (1988). Comparison Theorems for Eigenvalue Problems for nth Order Differential Equations. Proceedings of the American Mathematical Society, 104(4), 1204. doi:10.2307/2047613

Hankerson, D., & Henderson, J. (1990). Positive Solutions and Extremal Points for Differential Equations. Applicable Analysis, 39(2-3), 193-207. doi:10.1080/00036819008839980

Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-k

Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive Solutions and $J$-Focal Points for Two Point Boundary Value Problems. Rocky Mountain Journal of Mathematics, 22(4), 1283-1293. doi:10.1216/rmjm/1181072655

Eloe, P. W., & Henderson, J. (1993). Focal Points and Comparison Theorems for a Class of Two Point Boundary Value Problems. Journal of Differential Equations, 103(2), 375-386. doi:10.1006/jdeq.1993.1055

Eloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003

Eloe, P. ., Henderson, J., & Thompson, H. . (2000). Extremal points for impulsive Lidstone boundary value problems. Mathematical and Computer Modelling, 32(5-6), 687-698. doi:10.1016/s0895-7177(00)00165-5

Eloe, P. W., & Ahmad, B. (2005). Positive solutions of a nonlinear <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>n</mml:mi></mml:math>th order boundary value problem with nonlocal conditions. Applied Mathematics Letters, 18(5), 521-527. doi:10.1016/j.aml.2004.05.009

Graef, J. R., & Yang, B. (2006). Positive solutions to a multi-point higher order boundary value problem. Journal of Mathematical Analysis and Applications, 316(2), 409-421. doi:10.1016/j.jmaa.2005.04.049

Graef, J. R., Kong, L., & Wang, H. (2008). Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. Journal of Differential Equations, 245(5), 1185-1197. doi:10.1016/j.jde.2008.06.012

Zhang, X., Feng, M., & Ge, W. (2009). Existence and nonexistence of positive solutions for a class of nth-order three-point boundary value problems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(2), 584-597. doi:10.1016/j.na.2007.12.028

Zhang, P. (2011). Iterative Solutions of Singular Boundary Value Problems of Third-Order Differential Equation. Boundary Value Problems, 2011, 1-10. doi:10.1155/2011/483057

Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051

Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6

Lemmens, B., & Nussbaum, R. (2013). Continuity of the cone spectral radius. Proceedings of the American Mathematical Society, 141(8), 2741-2754. doi:10.1090/s0002-9939-2013-11520-0

Eloe, P. W., & Ridenhour, J. (1994). Sign Properties of Green’s Functions for a Family of Two-Point Boundary Value Problems. Proceedings of the American Mathematical Society, 120(2), 443. doi:10.2307/2159880

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem