- -

Solvability of Nth Order Linear Boundary Value Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solvability of Nth Order Linear Boundary Value Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Almenar, Pedro es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2016-05-05T15:29:35Z
dc.date.available 2016-05-05T15:29:35Z
dc.date.issued 2015
dc.identifier.issn 1687-9643
dc.identifier.uri http://hdl.handle.net/10251/63711
dc.description Copyright © 2015 P. Almenar and L. Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. es_ES
dc.description.abstract This paper presents a method that provides necessary and sufficient conditions for the existence of solutions of nth order linear boundary value problems. The method is based on the recursive application of a linear integral operator to some functions and the comparison of the result with these same functions. The recursive comparison yields sequences of bounds of extremes that converge to the exact values of the extremes of the BVP for which a solution exists. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2013-41765-P. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof International Journal of Differential Equations es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solvability of Nth Order Linear Boundary Value Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2015/230405
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Almenar, P.; Jódar Sánchez, LA. (2015). Solvability of Nth Order Linear Boundary Value Problems. International Journal of Differential Equations. 2015:1-19. https://doi.org/10.1155/2015/230405 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2015/230405 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.relation.senia 306283 es_ES
dc.identifier.eissn 1687-9651
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Almenar, P., & Jódar, L. (2014). The Distance between Points of a Solution of a Second Order Linear Differential Equation Satisfying General Boundary Conditions. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/126713 es_ES
dc.description.references Greguš, M. (1987). Third Order Linear Differential Equations. doi:10.1007/978-94-009-3715-4 es_ES
dc.description.references Polya, G. (1922). On the Mean-Value Theorem Corresponding to a Given Linear Homogeneous Differential Equations. Transactions of the American Mathematical Society, 24(4), 312. doi:10.2307/1988819 es_ES
dc.description.references Sherman, T. (1965). Properties of solutions ofn-th order linear differential equations. Pacific Journal of Mathematics, 15(3), 1045-1060. doi:10.2140/pjm.1965.15.1045 es_ES
dc.description.references Muldowney, J. S. (1979). A Necessary and Sufficient Condition for Disfocality. Proceedings of the American Mathematical Society, 74(1), 49. doi:10.2307/2042104 es_ES
dc.description.references Nehari, Z. (1967). Disconjugate Linear Differential Operators. Transactions of the American Mathematical Society, 129(3), 500. doi:10.2307/1994604 es_ES
dc.description.references Ahmad, S., & Lazer, A. C. (1978). AnN-Dimensional Extension of the Sturm Separation and Comparison Theory to a Class of Nonselfadjoint Systems. SIAM Journal on Mathematical Analysis, 9(6), 1137-1150. doi:10.1137/0509092 es_ES
dc.description.references Ahmad, S., & Lazer, A. C. (1980). On nth-order Sturmian theory. Journal of Differential Equations, 35(1), 87-112. doi:10.1016/0022-0396(80)90051-0 es_ES
dc.description.references Elias, U. (1975). The extremal solutions of the equation Ly + p(x)y = 0. Journal of Mathematical Analysis and Applications, 50(3), 447-457. doi:10.1016/0022-247x(75)90001-3 es_ES
dc.description.references Elias, U. (1977). Nonoscillation and Eventual Disconjugacy. Proceedings of the American Mathematical Society, 66(2), 269. doi:10.2307/2040944 es_ES
dc.description.references Elias, U. (1978). Eigenvalue problems for the equation Ly + λp(x) y = 0. Journal of Differential Equations, 29(1), 28-57. doi:10.1016/0022-0396(78)90039-6 es_ES
dc.description.references Deimling, K. (1985). Nonlinear Functional Analysis. doi:10.1007/978-3-662-00547-7 es_ES
dc.description.references Gentry, R. D., & Travis, C. C. (1976). Comparison of Eigenvalues Associated With Linear Differential Equations of Arbitrary Order. Transactions of the American Mathematical Society, 223, 167. doi:10.2307/1997522 es_ES
dc.description.references Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7 es_ES
dc.description.references Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625 es_ES
dc.description.references Tomastik, E. C. (1983). Comparison Theorems for Second Order Nonselfadjoint Differential Systems. SIAM Journal on Mathematical Analysis, 14(1), 60-65. doi:10.1137/0514005 es_ES
dc.description.references Kreith, K. (1984). A class of hyperbolic focal point problems. Hiroshima Mathematical Journal, 14(1), 203-210. doi:10.32917/hmj/1206133155 es_ES
dc.description.references Hankerson, D., & Peterson, A. (1988). Comparison Theorems for Eigenvalue Problems for nth Order Differential Equations. Proceedings of the American Mathematical Society, 104(4), 1204. doi:10.2307/2047613 es_ES
dc.description.references Hankerson, D., & Henderson, J. (1990). Positive Solutions and Extremal Points for Differential Equations. Applicable Analysis, 39(2-3), 193-207. doi:10.1080/00036819008839980 es_ES
dc.description.references Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-k es_ES
dc.description.references Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive Solutions and $J$-Focal Points for Two Point Boundary Value Problems. Rocky Mountain Journal of Mathematics, 22(4), 1283-1293. doi:10.1216/rmjm/1181072655 es_ES
dc.description.references Eloe, P. W., & Henderson, J. (1993). Focal Points and Comparison Theorems for a Class of Two Point Boundary Value Problems. Journal of Differential Equations, 103(2), 375-386. doi:10.1006/jdeq.1993.1055 es_ES
dc.description.references Eloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003 es_ES
dc.description.references Eloe, P. ., Henderson, J., & Thompson, H. . (2000). Extremal points for impulsive Lidstone boundary value problems. Mathematical and Computer Modelling, 32(5-6), 687-698. doi:10.1016/s0895-7177(00)00165-5 es_ES
dc.description.references Eloe, P. W., & Ahmad, B. (2005). Positive solutions of a nonlinear <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>n</mml:mi></mml:math>th order boundary value problem with nonlocal conditions. Applied Mathematics Letters, 18(5), 521-527. doi:10.1016/j.aml.2004.05.009 es_ES
dc.description.references Graef, J. R., & Yang, B. (2006). Positive solutions to a multi-point higher order boundary value problem. Journal of Mathematical Analysis and Applications, 316(2), 409-421. doi:10.1016/j.jmaa.2005.04.049 es_ES
dc.description.references Graef, J. R., Kong, L., & Wang, H. (2008). Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. Journal of Differential Equations, 245(5), 1185-1197. doi:10.1016/j.jde.2008.06.012 es_ES
dc.description.references Zhang, X., Feng, M., & Ge, W. (2009). Existence and nonexistence of positive solutions for a class of nth-order three-point boundary value problems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(2), 584-597. doi:10.1016/j.na.2007.12.028 es_ES
dc.description.references Zhang, P. (2011). Iterative Solutions of Singular Boundary Value Problems of Third-Order Differential Equation. Boundary Value Problems, 2011, 1-10. doi:10.1155/2011/483057 es_ES
dc.description.references Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051 es_ES
dc.description.references Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6 es_ES
dc.description.references Lemmens, B., & Nussbaum, R. (2013). Continuity of the cone spectral radius. Proceedings of the American Mathematical Society, 141(8), 2741-2754. doi:10.1090/s0002-9939-2013-11520-0 es_ES
dc.description.references Eloe, P. W., & Ridenhour, J. (1994). Sign Properties of Green’s Functions for a Family of Two-Point Boundary Value Problems. Proceedings of the American Mathematical Society, 120(2), 443. doi:10.2307/2159880 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem