- -

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

Show full item record

Adrián Martínez, S.; Ardid Ramírez, M.; Bou Cabo, M.; Ferri García, M.; Larosa, G.; Martínez Mora, JA.; Astraatmadja, T.... (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics. 2013(6):1-39. https://doi.org/10.1088/1475-7516/2013/06/008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63728

Files in this item

Item Metadata

Title: A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
Author: Adrián Martínez, Silvia Ardid Ramírez, Miguel Bou Cabo, Manuel Ferri García, Marcelino Larosa, Giuseppina Martínez Mora, Juan Antonio Astraatmadja, T. Aubert, J.J. Al Samarai, I. Albert, A. Baret, B. André, M. Basa, S. Bertin, Vincent Anghinolfi, M.
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
We present the results of the fi rst search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon ...[+]
Subjects: Gravitational waves , Experiments , Neutrino astronomy
Copyrigths: Reserva de todos los derechos
Source:
Journal of Cosmology and Astroparticle Physics. (eissn: 1475-7516 )
DOI: 10.1088/1475-7516/2013/06/008
Publisher:
IOP Publishing: Hybrid Open Access
Project ID:
United States National Science Foundation
...[+]
United States National Science Foundation
Science and Technology Facilities Council of the United Kingdom
Max-Planck-Society, Germany
State of Niedersachsen, Germany
Australian Research Council
International Science Linkages program of the Commonwealth of Australia
Council of Scientific and Industrial Research of India
Istituto Nazionale di Fisica Nucleare of Italy
Spanish Ministerio de Educacion y Ciencia
Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears
Foundation for Fundamental Research on Matter
Netherlands Organisation for Scientific Research
Polish Ministry of Science and Higher Education
FOCUS Programme of Foundation for Polish Science
Royal Society
Scottish Funding Council
Scottish Universities Physics Alliance
National Aeronautics and Space Administration
Carnegie Trust
Leverhulme Trust
David and Lucile Packard Foundation
Research Corporation
Alfred P. Sloan Foundation
Centre National de la Recherche Scientifique (CNRS)
Commissariat a l'energie atomique et aux energies alternatives (CEA), France
Agence National de la Recherche (ANR), France
Commission Europeenne (FEDER fund and Marie Curie Program), France
Region Alsace (contrat CPER), France
Region Provence-Alpes-Cote d'Azur, France
Departement du Var and Ville de La Seyne-sur-Mer, France
Bundesministerium fur Bildung und Forschung (BMBF), Germany
Istituto Nazionale di Fisica Nucleare (INFN), Italy
Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands
Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands
Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia
National Authority for Scientific Research (ANCS), Romania
Ministerio de Ciencia e Innovacion (MICINN), Spain
Prometeo of Generalitat Valenciana (GVA), Spain
Multi-Dark, Spain
[-]
Thanks:
The authors also acknowledge the financial support of the funding agencies for the construction and operation of the ANTARES neutrino telescope: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie ...[+]
Type: Artículo

References

Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Ceron, E. A. (2010). SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO’S FIFTH AND VIRGO’S FIRST SCIENCE RUN. The Astrophysical Journal, 715(2), 1453-1461. doi:10.1088/0004-637x/715/2/1453

Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2012). Publisher’s Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 85(8). doi:10.1103/physrevd.85.089903

Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27(17), 173001. doi:10.1088/0264-9381/27/17/173001 [+]
Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Ceron, E. A. (2010). SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO’S FIFTH AND VIRGO’S FIRST SCIENCE RUN. The Astrophysical Journal, 715(2), 1453-1461. doi:10.1088/0004-637x/715/2/1453

Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2012). Publisher’s Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 85(8). doi:10.1103/physrevd.85.089903

Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27(17), 173001. doi:10.1088/0264-9381/27/17/173001

Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2011). SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. The Astrophysical Journal, 734(2), L35. doi:10.1088/2041-8205/734/2/l35

Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 85(12). doi:10.1103/physrevd.85.122007

Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. The Astrophysical Journal, 760(1), 12. doi:10.1088/0004-637x/760/1/12

Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Physical Review D, 85(8). doi:10.1103/physrevd.85.082002

Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2010). SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. The Astrophysical Journal, 710(1), 346-359. doi:10.1088/0004-637x/710/1/346

Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Erratum: Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data [Phys. Rev. D83, 092003 (2011)]. Physical Review D, 84(7). doi:10.1103/physrevd.84.079902

Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.141101

(2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068

Abbasi, R., Abdou, Y., Abu-Zayyad, T., Ackermann, M., Adams, J., Aguilar, J. A., … Andeen, K. (2012). Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. Astronomy & Astrophysics, 539, A60. doi:10.1051/0004-6361/201118071

Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. The Astrophysical Journal, 744(1), 1. doi:10.1088/0004-637x/744/1/1

Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. The Astrophysical Journal, 683(1), L45-L49. doi:10.1086/591526

Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 101(21). doi:10.1103/physrevlett.101.211102

Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., … Arain, M. (2008). Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 77(6). doi:10.1103/physrevd.77.062004

Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 80(6). doi:10.1103/physrevd.80.062002

Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7), 076901. doi:10.1088/0034-4885/72/7/076901

Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. The Astrophysical Journal, 701(2), L68-L74. doi:10.1088/0004-637x/701/2/l68

Abbott, B. P., Abbott, R., Acernese, F., Adhikari, R., Ajith, P., Allen, B., … Anderson, S. B. (2010). SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. The Astrophysical Journal, 715(2), 1438-1452. doi:10.1088/0004-637x/715/2/1438

Accadia, T., Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., … Astone, P. (2012). Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 7(03), P03012-P03012. doi:10.1088/1748-0221/7/03/p03012

Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., Astone, P., … Barone, F. (2008). Status of Virgo. Classical and Quantum Gravity, 25(11), 114045. doi:10.1088/0264-9381/25/11/114045

Achterberg, A., Ackermann, M., Adams, J., Ahrens, J., Andeen, K., Atlee, D. W., … Bartelt, M. (2006). Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 97(22). doi:10.1103/physrevlett.97.221101

Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astroparticle Physics, 36(1), 204-210. doi:10.1016/j.astropartphys.2012.06.001

Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53

Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters B, 714(2-5), 224-230. doi:10.1016/j.physletb.2012.07.002

Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103

Aglietta, M., Antonioli, P., Bari, G., Castagnoli, C., Fulgione, W., Galeotti, P., … Zichichi, A. (2004). Search for low energy ν in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001. Astronomy & Astrophysics, 421(2), 399-405. doi:10.1051/0004-6361:20040244

Aguilar, J. A., Albert, A., Ameli, F., Amram, P., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2005). Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 132-141. doi:10.1016/j.nima.2005.09.035

Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098

Aguilar, J. A., Albert, A., Anton, G., Anvar, S., Ardid, M., Assis Jesus, A. C., … Baret, B. (2010). Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector. Astroparticle Physics, 34(3), 179-184. doi:10.1016/j.astropartphys.2010.07.001

Aguilar, J. A., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Search for a diffuse flux of high-energy <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>ν</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math> with the ANTARES neutrino telescope. Physics Letters B, 696(1-2), 16-22. doi:10.1016/j.physletb.2010.11.070

Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003

Alvarez-Muñiz, J., & Halzen, F. (2001). 1020 eVcosmic-ray and particle physics with kilometer-scale neutrino telescopes. Physical Review D, 63(3). doi:10.1103/physrevd.63.037302

Amram, P., Anghinolfi, M., Anvar, S., Ardellier-Desages, F. ., Aslanides, E., Aubert, J.-J., … Battaglieri, M. (2003). Sedimentation and fouling of optical surfaces at the ANTARES site. Astroparticle Physics, 19(2), 253-267. doi:10.1016/s0927-6505(02)00202-5

Anchordoqui, L., & Halzen, F. (2006). IceHEP high energy physics at the South Pole. Annals of Physics, 321(11), 2660-2716. doi:10.1016/j.aop.2005.11.015

Ando, S., & Beacom, J. F. (2005). Revealing the Supernova–Gamma-Ray Burst Connection with TeV Neutrinos. Physical Review Letters, 95(6). doi:10.1103/physrevlett.95.061103

Aso, Y., Márka, Z., Finley, C., Dwyer, J., Kotake, K., & Márka, S. (2008). Search method for coincident events from LIGO and IceCube detectors. Classical and Quantum Gravity, 25(11), 114039. doi:10.1088/0264-9381/25/11/114039

ATHAR, H., KIM, C. S., & LEE, J. (2006). INTRINSIC AND OSCILLATED ASTROPHYSICAL NEUTRINO FLAVOR RATIOS REVISITED. Modern Physics Letters A, 21(13), 1049-1065. doi:10.1142/s021773230602038x

Baret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001

Barthelmy, S. D., Barbier, L. M., Cummings, J. R., Fenimore, E. E., Gehrels, N., Hullinger, D., … Tueller, J. (2005). The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Science Reviews, 120(3-4), 143-164. doi:10.1007/s11214-005-5096-3

Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101

Bazin, G., Palanque-Delabrouille, N., Rich, J., Ruhlmann-Kleider, V., Aubourg, E., Le Guillou, L., … Walker, E. S. (2009). The core-collapse rate from the Supernova Legacy Survey. Astronomy & Astrophysics, 499(3), 653-660. doi:10.1051/0004-6361/200911847

Berezinsky, V., Sabancilar, E., & Vilenkin, A. (2011). Extremely high energy neutrinos from cosmic strings. Physical Review D, 84(8). doi:10.1103/physrevd.84.085006

Bhattacharjee, P. (1989). Cosmic strings and ultrahigh-energy cosmic rays. Physical Review D, 40(12), 3968-3975. doi:10.1103/physrevd.40.3968

Braccini, S., Barsotti, L., Bradaschia, C., Cella, G., Virgilio, A. D., Ferrante, I., … Gennai, A. (2005). Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 23(6), 557-565. doi:10.1016/j.astropartphys.2005.04.002

Brady, P. R., Creighton, J. D. E., & Wiseman, A. G. (2004). Upper limits on gravitational-wave signals based on loudest events. Classical and Quantum Gravity, 21(20), S1775-S1781. doi:10.1088/0264-9381/21/20/020

Bromberg, O., Nakar, E., & Piran, T. (2011). ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? The Astrophysical Journal, 739(2), L55. doi:10.1088/2041-8205/739/2/l55

Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. The Astrophysical Journal, 664(1), 416-434. doi:10.1086/519161

Chapman, R., Tanvir, N. R., Priddey, R. S., & Levan, A. J. (2007). How common are long gamma-ray bursts in the local Universe? Monthly Notices of the Royal Astronomical Society: Letters, 382(1), L21-L25. doi:10.1111/j.1745-3933.2007.00381.x

Chatterji, S., Lazzarini, A., Stein, L., Sutton, P. J., Searle, A., & Tinto, M. (2006). Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Physical Review D, 74(8). doi:10.1103/physrevd.74.082005

Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171

Corsi, A., & Owen, B. J. (2011). Maximum gravitational-wave energy emissible in magnetar flares. Physical Review D, 83(10). doi:10.1103/physrevd.83.104014

Creighton, J. D. E., & Anderson, W. G. (2011). Gravitational-Wave Physics and Astronomy. doi:10.1002/9783527636037

Damour, T., & Vilenkin, A. (2000). Gravitational Wave Bursts from Cosmic Strings. Physical Review Letters, 85(18), 3761-3764. doi:10.1103/physrevlett.85.3761

Damour, T., & Vilenkin, A. (2001). Gravitational wave bursts from cusps and kinks on cosmic strings. Physical Review D, 64(6). doi:10.1103/physrevd.64.064008

Davies, M. B., King, A., Rosswog, S., & Wynn, G. (2002). Gamma-Ray Bursts, Supernova Kicks, and Gravitational Radiation. The Astrophysical Journal, 579(2), L63-L66. doi:10.1086/345288

Dietz, A., Fotopoulos, N., Singer, L., & Cutler, C. (2013). Outlook for detection of GW inspirals by GRB-triggered searches in the advanced detector era. Physical Review D, 87(6). doi:10.1103/physrevd.87.064033

Dimmelmeier, H., Ott, C. D., Marek, A., & Janka, H.-T. (2008). Gravitational wave burst signal from core collapse of rotating stars. Physical Review D, 78(6). doi:10.1103/physrevd.78.064056

Faber, J. A., & Rasio, F. A. (2012). Binary Neutron Star Mergers. Living Reviews in Relativity, 15(1). doi:10.12942/lrr-2012-8

Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034

Fryer, C. L., & New, K. C. B. (2011). Gravitational Waves from Gravitational Collapse. Living Reviews in Relativity, 14(1). doi:10.12942/lrr-2011-1

Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). Gamma-Ray Bursts in theSwiftEra. Annual Review of Astronomy and Astrophysics, 47(1), 567-617. doi:10.1146/annurev.astro.46.060407.145147

Gehrels, N. (2004). The Swift Gamma-Ray Burst Mission. AIP Conference Proceedings. doi:10.1063/1.1810924

Gill, R., & Heyl, J. S. (2010). On the trigger mechanisms for soft gamma-ray repeater giant flares. Monthly Notices of the Royal Astronomical Society, 407(3), 1926-1932. doi:10.1111/j.1365-2966.2010.17038.x

Gorham, P. W., Allison, P., Baughman, B. M., Beatty, J. J., Belov, K., Besson, D. Z., … Wang, Y. (2010). Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment. Physical Review D, 82(2). doi:10.1103/physrevd.82.022004

Guetta, D., & Piran, T. (2006). The BATSE-Swift luminosity and redshift distributions of short-duration GRBs. Astronomy & Astrophysics, 453(3), 823-828. doi:10.1051/0004-6361:20054498

Guetta, D., Piran, T., & Waxman, E. (2005). The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts. The Astrophysical Journal, 619(1), 412-419. doi:10.1086/423125

Guetta, D., & Stella, L. (2008). Short γ-ray bursts and gravitational waves from dynamically formed merging binaries. Astronomy & Astrophysics, 498(2), 329-333. doi:10.1051/0004-6361:200810493

Guetta, D., & Della Valle, M. (2007). On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae. The Astrophysical Journal, 657(2), L73-L76. doi:10.1086/511417

Guetta, D., Hooper, D., Alvarez-Muñiz, J., Halzen, F., & Reuveni, E. (2004). Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astroparticle Physics, 20(4), 429-455. doi:10.1016/s0927-6505(03)00211-1

Harry, G. M. (2010). Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity, 27(8), 084006. doi:10.1088/0264-9381/27/8/084006

He, H.-N., Liu, R.-Y., Wang, X.-Y., Nagataki, S., Murase, K., & Dai, Z.-G. (2012). ICECUBE NONDETECTION OF GAMMA-RAY BURSTS: CONSTRAINTS ON THE FIREBALL PROPERTIES. The Astrophysical Journal, 752(1), 29. doi:10.1088/0004-637x/752/1/29

Hernández-Rey, J. J. (2009). Neutrino telescopes in the Mediterranean sea. Journal of Physics: Conference Series, 171, 012047. doi:10.1088/1742-6596/171/1/012047

Hill, C. T., Schramm, D. N., & Walker, T. P. (1987). Ultra-high-energy cosmic rays from superconducting cosmic strings. Physical Review D, 36(4), 1007-1016. doi:10.1103/physrevd.36.1007

Horiuchi, S., & Ando, S. (2008). High-energy neutrinos from reverse shocks in choked and successful relativistic jets. Physical Review D, 77(6). doi:10.1103/physrevd.77.063007

Hümmer, S., Baerwald, P., & Winter, W. (2012). Neutrino Emission from Gamma-Ray Burst Fireballs, Revised. Physical Review Letters, 108(23). doi:10.1103/physrevlett.108.231101

Hurley, K. (2011). Soft gamma repeaters. Advances in Space Research, 47(8), 1326-1331. doi:10.1016/j.asr.2010.03.001

Ioka, K. (2001). Magnetic deformation of magnetars for the giant flares of the soft gamma-ray repeaters. Monthly Notices of the Royal Astronomical Society, 327(2), 639-662. doi:10.1046/j.1365-8711.2001.04756.x

Ioka, K., Razzaque, S., Kobayashi, S., & Meszaros, P. (2005). TeV‐PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806−20. The Astrophysical Journal, 633(2), 1013-1017. doi:10.1086/466514

Khokhlov, A. M., Höflich, P. A., Oran, E. S., Wheeler, J. C., Wang, L., & Chtchelkanova, A. Y. (1999). Jet-induced Explosions of Core Collapse Supernovae. The Astrophysical Journal, 524(2), L107-L110. doi:10.1086/312305

Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General, 9(8), 1387-1398. doi:10.1088/0305-4470/9/8/029

Kiuchi, K., Shibata, M., Montero, P. J., & Font, J. A. (2011). Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.251102

Kobayashi, S., & Meszaros, P. (2003). Gravitational Radiation from Gamma‐Ray Burst Progenitors. The Astrophysical Journal, 589(2), 861-870. doi:10.1086/374733

Kobayashi, S., & Mészáros, P. (2003). Polarized Gravitational Waves from Gamma-Ray Bursts. The Astrophysical Journal, 585(2), L89-L92. doi:10.1086/374307

Kotake, K. (2013). Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Comptes Rendus Physique, 14(4), 318-351. doi:10.1016/j.crhy.2013.01.008

Lazzati, D., Morsony, B. J., Blackwell, C. H., & Begelman, M. C. (2012). UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS. The Astrophysical Journal, 750(1), 68. doi:10.1088/0004-637x/750/1/68

Le, T., & Dermer, C. D. (2007). On the Redshift Distribution of Gamma‐Ray Bursts in theSwiftEra. The Astrophysical Journal, 661(1), 394-415. doi:10.1086/513460

Levin, Y., & van Hoven, M. (2011). On the excitation of f modes and torsional modes by magnetar giant flares. Monthly Notices of the Royal Astronomical Society, 418(1), 659-663. doi:10.1111/j.1365-2966.2011.19515.x

Li, Z. (2012). Note on the normalization of predicted gamma-ray burst neutrino flux. Physical Review D, 85(2). doi:10.1103/physrevd.85.027301

Liang, E., Zhang, B., Virgili, F., & Dai, Z. G. (2007). Low‐Luminosity Gamma‐Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. The Astrophysical Journal, 662(2), 1111-1118. doi:10.1086/517959

Lunardini, C., & Sabancilar, E. (2012). Cosmic strings as emitters of extremely high energy neutrinos. Physical Review D, 86(8). doi:10.1103/physrevd.86.085008

Lyutikov, M. (2006). Magnetar giant flares and afterglows as relativistic magnetized explosions. Monthly Notices of the Royal Astronomical Society, 367(4), 1594-1602. doi:10.1111/j.1365-2966.2006.10069.x

MacFadyen, A. I., & Woosley, S. E. (1999). Collapsars: Gamma‐Ray Bursts and Explosions in «Failed Supernovae». The Astrophysical Journal, 524(1), 262-289. doi:10.1086/307790

Mattila, S., Dahlen, T., Efstathiou, A., Kankare, E., Melinder, J., Alonso-Herrero, A., … Östlin, G. (2012). CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS. The Astrophysical Journal, 756(2), 111. doi:10.1088/0004-637x/756/2/111

Meegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., … Wilson-Hodge, C. (2009). THEFERMIGAMMA-RAY BURST MONITOR. The Astrophysical Journal, 702(1), 791-804. doi:10.1088/0004-637x/702/1/791

Mereghetti, S. (2011). The multi-wavelength properties of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters. Advances in Space Research, 47(8), 1317-1325. doi:10.1016/j.asr.2010.08.031

Mészáros, P. (2006). Gamma-ray bursts. Reports on Progress in Physics, 69(8), 2259-2321. doi:10.1088/0034-4885/69/8/r01

Mészáros, P., & Waxman, E. (2001). TeV Neutrinos from Successful and Choked Gamma-Ray Bursts. Physical Review Letters, 87(17). doi:10.1103/physrevlett.87.171102

Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. (2011). The protomagnetar model for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 413(3), 2031-2056. doi:10.1111/j.1365-2966.2011.18280.x

Modjaz, M. (2011). Stellar forensics with the supernova-GRB connection - Ludwig Biermann Award Lecture 2010. Astronomische Nachrichten, 332(5), 434-447. doi:10.1002/asna.201111562

Mosquera Cuesta, H. J., & González, D. M. (2001). Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum. Physics Letters B, 500(3-4), 215-221. doi:10.1016/s0370-2693(01)00073-9

Murase, K., & Nagataki, S. (2006). High Energy Neutrino Flashes from Far-Ultraviolet and X-Ray Flares in Gamma-Ray Bursts. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.051101

Murase, K., Ioka, K., Nagataki, S., & Nakamura, T. (2006). High-Energy Neutrinos and Cosmic Rays from Low-Luminosity Gamma-Ray Bursts? The Astrophysical Journal, 651(1), L5-L8. doi:10.1086/509323

NAKAR, E. (2007). Short-hard gamma-ray bursts. Physics Reports, 442(1-6), 166-236. doi:10.1016/j.physrep.2007.02.005

Nakar, E., Gal‐Yam, A., & Fox, D. B. (2006). The Local Rate and the Progenitor Lifetimes of Short‐Hard Gamma‐Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational‐Wave Observatory. The Astrophysical Journal, 650(1), 281-290. doi:10.1086/505855

Nissanke, S., Kasliwal, M., & Georgieva, A. (2013). IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION. The Astrophysical Journal, 767(2), 124. doi:10.1088/0004-637x/767/2/124

O’Connor, E., & Ott, C. D. (2011). BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE. The Astrophysical Journal, 730(2), 70. doi:10.1088/0004-637x/730/2/70

Ott, C. D. (2009). The gravitational-wave signature of core-collapse supernovae. Classical and Quantum Gravity, 26(6), 063001. doi:10.1088/0264-9381/26/6/063001

Ott, C. D., Reisswig, C., Schnetter, E., O’Connor, E., Sperhake, U., Löffler, F., … Burrows, A. (2011). Dynamics and Gravitational Wave Signature of Collapsar Formation. Physical Review Letters, 106(16). doi:10.1103/physrevlett.106.161103

Ott, C. D., Abdikamalov, E., O’Connor, E., Reisswig, C., Haas, R., Kalmus, P., … Schnetter, E. (2012). Correlated gravitational wave and neutrino signals from general-relativistic rapidly rotating iron core collapse. Physical Review D, 86(2). doi:10.1103/physrevd.86.024026

Papaloizou, J. C., & Savonije, G. J. (1991). Instabilities in self-gravitating gaseous discs. Monthly Notices of the Royal Astronomical Society, 248(3), 353-369. doi:10.1093/mnras/248.3.353

Papaloizou, J. C. B., & Pringle, J. E. (1984). The dynamical stability of differentially rotating discs with constant specific angular momentum. Monthly Notices of the Royal Astronomical Society, 208(4), 721-750. doi:10.1093/mnras/208.4.721

Piran, T. (2005). The physics of gamma-ray bursts. Reviews of Modern Physics, 76(4), 1143-1210. doi:10.1103/revmodphys.76.1143

Piro, A. L., & Pfahl, E. (2007). Fragmentation of Collapsar Disks and the Production of Gravitational Waves. The Astrophysical Journal, 658(2), 1173-1176. doi:10.1086/511672

Popham, R., Woosley, S. E., & Fryer, C. (1999). Hyperaccreting Black Holes and Gamma‐Ray Bursts. The Astrophysical Journal, 518(1), 356-374. doi:10.1086/307259

Pradier, T. (2009). Coincidences between gravitational wave interferometers and high energy neutrino telescopes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(1), 268-274. doi:10.1016/j.nima.2008.12.055

Razzaque, S., Mészáros, P., & Waxman, E. (2003). Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 68(8). doi:10.1103/physrevd.68.083001

Razzaque, S., Mészáros, P., & Waxman, E. (2004). TeV Neutrinos from Core Collapse Supernovae and Hypernovae. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.181101

RAZZAQUE, S., MÉSZÁROS, P., & WAXMAN, E. (2005). HIGH ENERGY NEUTRINOS FROM A SLOW JET MODEL OF CORE COLLAPSE SUPERNOVAE. Modern Physics Letters A, 20(31), 2351-2367. doi:10.1142/s0217732305018414

Scheidegger, S., Käppeli, R., Whitehouse, S. C., Fischer, T., & Liebendörfer, M. (2010). The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse. Astronomy and Astrophysics, 514, A51. doi:10.1051/0004-6361/200913220

Scholten, O., Buitink, S., Bacelar, J., Braun, R., de Bruyn, A. G., Falcke, H., … al Yahyaoui, R. (2009). First results of the NuMoon experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604(1-2), S102-S105. doi:10.1016/j.nima.2009.03.037

Shibata, M., & Taniguchi, K. (2011). Coalescence of Black Hole-Neutron Star Binaries. Living Reviews in Relativity, 14(1). doi:10.12942/lrr-2011-6

Siemens, X., Creighton, J., Maor, I., Majumder, S. R., Cannon, K., & Read, J. (2006). Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints. Physical Review D, 73(10). doi:10.1103/physrevd.73.105001

Soderberg, A. M., Kulkarni, S. R., Nakar, E., Berger, E., Cameron, P. B., Fox, D. B., … McCarthy, P. J. (2006). Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 442(7106), 1014-1017. doi:10.1038/nature05087

Soderberg, A. M., Chakraborti, S., Pignata, G., Chevalier, R. A., Chandra, P., Ray, A., … Torres, M. A. P. (2010). A relativistic type Ibc supernova without a detected γ-ray burst. Nature, 463(7280), 513-515. doi:10.1038/nature08714

Sutton, P. J., Jones, G., Chatterji, S., Kalmus, P., Leonor, I., Poprocki, S., … Was, M. (2010). X-Pipeline: an analysis package for autonomous gravitational-wave burst searches. New Journal of Physics, 12(5), 053034. doi:10.1088/1367-2630/12/5/053034

Takiwaki, T., & Kotake, K. (2011). GRAVITATIONAL WAVE SIGNATURES OF MAGNETOHYDRODYNAMICALLY DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS. The Astrophysical Journal, 743(1), 30. doi:10.1088/0004-637x/743/1/30

Thompson, C., & Duncan, R. C. (1995). The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts. Monthly Notices of the Royal Astronomical Society, 275(2), 255-300. doi:10.1093/mnras/275.2.255

Van Putten, M. H. P. M., Levinson, A., Lee, H. K., Regimbau, T., Punturo, M., & Harry, G. M. (2004). Gravitational radiation from gamma-ray burst-supernovae as observational opportunities for LIGO and VIRGO. Physical Review D, 69(4). doi:10.1103/physrevd.69.044007

Virgili, F. J., Liang, E.-W., & Zhang, B. (2009). Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints. Monthly Notices of the Royal Astronomical Society, 392(1), 91-103. doi:10.1111/j.1365-2966.2008.14063.x

Wang, X.-Y., Razzaque, S., Mészáros, P., & Dai, Z.-G. (2007). High-energy cosmic rays and neutrinos from semirelativistic hypernovae. Physical Review D, 76(8). doi:10.1103/physrevd.76.083009

Wąs, M., Sutton, P. J., Jones, G., & Leonor, I. (2012). Performance of an externally triggered gravitational-wave burst search. Physical Review D, 86(2). doi:10.1103/physrevd.86.022003

Waxman, E., & Bahcall, J. (1997). High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters, 78(12), 2292-2295. doi:10.1103/physrevlett.78.2292

Waxman, E., & Loeb, A. (2001). TeV Neutrinos and GeV Photons from Shock Breakout in Supernovae. Physical Review Letters, 87(7). doi:10.1103/physrevlett.87.071101

White, D. J., Daw, E. J., & Dhillon, V. S. (2011). A list of galaxies for gravitational wave searches. Classical and Quantum Gravity, 28(8), 085016. doi:10.1088/0264-9381/28/8/085016

Winter, W. (2012). Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects. Advances in High Energy Physics, 2012, 1-41. doi:10.1155/2012/586413

Woosley, S. E. (1993). Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal, 405, 273. doi:10.1086/172359

Woosley, S. E., & Heger, A. (2006). The Progenitor Stars of Gamma‐Ray Bursts. The Astrophysical Journal, 637(2), 914-921. doi:10.1086/498500

Zhang, B.-B., Fan, Y.-Z., Shen, R.-F., Xu, D., Zhang, F.-W., Wei, D.-M., … Gehrels, N. (2012). GRB 120422A: A LOW-LUMINOSITY GAMMA-RAY BURST DRIVEN BY A CENTRAL ENGINE. The Astrophysical Journal, 756(2), 190. doi:10.1088/0004-637x/756/2/190

Zink, B., Lasky, P. D., & Kokkotas, K. D. (2012). Are gravitational waves from giant magnetar flares observable? Physical Review D, 85(2). doi:10.1103/physrevd.85.024030

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record