- -

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Adrián Martínez, Silvia es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Bou Cabo, Manuel es_ES
dc.contributor.author Ferri García, Marcelino es_ES
dc.contributor.author Larosa, Giuseppina es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.contributor.author Astraatmadja, T. es_ES
dc.contributor.author Aubert, J.J. es_ES
dc.contributor.author Al Samarai, I. es_ES
dc.contributor.author Albert, A. es_ES
dc.contributor.author Baret, B. es_ES
dc.contributor.author André, M. es_ES
dc.contributor.author Basa, S. es_ES
dc.contributor.author Bertin, Vincent es_ES
dc.contributor.author Anghinolfi, M. es_ES
dc.date.accessioned 2016-05-06T08:20:49Z
dc.date.available 2016-05-06T08:20:49Z
dc.date.issued 2013-06
dc.identifier.uri http://hdl.handle.net/10251/63728
dc.description.abstract We present the results of the fi rst search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line con guration during the period January - September 2007, which coincided with the fifth and fi rst science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No signi cant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events. es_ES
dc.description.sponsorship The authors also acknowledge the financial support of the funding agencies for the construction and operation of the ANTARES neutrino telescope: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Agence National de la Recherche (ANR), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana (GVA) and Multi-Dark, Spain. They also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. This publication has been assigned LIGO Document Number LIGO-P1200006. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Cosmology and Astroparticle Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gravitational waves es_ES
dc.subject Experiments es_ES
dc.subject Neutrino astronomy es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1475-7516/2013/06/008
dc.relation.projectID info:eu-repo/grantAgreement/FNP/FOCUS Programme// es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00063/ES/Multimessenger Approach for Dark Matter Detection/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Adrián Martínez, S.; Ardid Ramírez, M.; Bou Cabo, M.; Ferri García, M.; Larosa, G.; Martínez Mora, JA.; Astraatmadja, T.... (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics. 2013(6):1-39. https://doi.org/10.1088/1475-7516/2013/06/008 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 39 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 249458 es_ES
dc.identifier.eissn 1475-7516
dc.contributor.funder Conseil Régional Provence-Alpes-Côte d'Azur es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Conseil Régional d'Alsace es_ES
dc.contributor.funder David and Lucile Packard Foundation es_ES
dc.contributor.funder Foundation for Polish Science es_ES
dc.contributor.funder Max Planck Society es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.contributor.funder Govern de les Illes Balears es_ES
dc.contributor.funder Scottish Universities Physics Alliance es_ES
dc.contributor.funder Département du Var and Ville de La Seyne-sur-Mer es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Scottish Funding Council es_ES
dc.contributor.funder Australian Research Council es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Royal Society, Reino Unido es_ES
dc.contributor.funder Leverhulme Trust es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Alfred P. Sloan Foundation es_ES
dc.contributor.funder Science and Technology Facilities Council, Reino Unido es_ES
dc.contributor.funder Foundation for Fundamental Research on Matter, Holanda es_ES
dc.contributor.funder National Authority for Scientific Research, Rumanía es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.contributor.funder Council on grants of the President of the Russian Federation es_ES
dc.contributor.funder Instituto Nazionale di Fisica Nucleare es_ES
dc.contributor.funder Ministry of Science and Higher Education, Polonia es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.contributor.funder Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Francia es_ES
dc.contributor.funder National Aeronautics and Space Administration, EEUU es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Ceron, E. A. (2010). SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO’S FIFTH AND VIRGO’S FIRST SCIENCE RUN. The Astrophysical Journal, 715(2), 1453-1461. doi:10.1088/0004-637x/715/2/1453 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2012). Publisher’s Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 85(8). doi:10.1103/physrevd.85.089903 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27(17), 173001. doi:10.1088/0264-9381/27/17/173001 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2011). SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. The Astrophysical Journal, 734(2), L35. doi:10.1088/2041-8205/734/2/l35 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 85(12). doi:10.1103/physrevd.85.122007 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. The Astrophysical Journal, 760(1), 12. doi:10.1088/0004-637x/760/1/12 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Physical Review D, 85(8). doi:10.1103/physrevd.85.082002 es_ES
dc.description.references Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2010). SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. The Astrophysical Journal, 710(1), 346-359. doi:10.1088/0004-637x/710/1/346 es_ES
dc.description.references Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Erratum: Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data [Phys. Rev. D83, 092003 (2011)]. Physical Review D, 84(7). doi:10.1103/physrevd.84.079902 es_ES
dc.description.references Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.141101 es_ES
dc.description.references (2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068 es_ES
dc.description.references Abbasi, R., Abdou, Y., Abu-Zayyad, T., Ackermann, M., Adams, J., Aguilar, J. A., … Andeen, K. (2012). Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. Astronomy & Astrophysics, 539, A60. doi:10.1051/0004-6361/201118071 es_ES
dc.description.references Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. The Astrophysical Journal, 744(1), 1. doi:10.1088/0004-637x/744/1/1 es_ES
dc.description.references Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. The Astrophysical Journal, 683(1), L45-L49. doi:10.1086/591526 es_ES
dc.description.references Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 101(21). doi:10.1103/physrevlett.101.211102 es_ES
dc.description.references Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., … Arain, M. (2008). Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 77(6). doi:10.1103/physrevd.77.062004 es_ES
dc.description.references Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 80(6). doi:10.1103/physrevd.80.062002 es_ES
dc.description.references Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7), 076901. doi:10.1088/0034-4885/72/7/076901 es_ES
dc.description.references Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. The Astrophysical Journal, 701(2), L68-L74. doi:10.1088/0004-637x/701/2/l68 es_ES
dc.description.references Abbott, B. P., Abbott, R., Acernese, F., Adhikari, R., Ajith, P., Allen, B., … Anderson, S. B. (2010). SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. The Astrophysical Journal, 715(2), 1438-1452. doi:10.1088/0004-637x/715/2/1438 es_ES
dc.description.references Accadia, T., Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., … Astone, P. (2012). Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 7(03), P03012-P03012. doi:10.1088/1748-0221/7/03/p03012 es_ES
dc.description.references Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., Astone, P., … Barone, F. (2008). Status of Virgo. Classical and Quantum Gravity, 25(11), 114045. doi:10.1088/0264-9381/25/11/114045 es_ES
dc.description.references Achterberg, A., Ackermann, M., Adams, J., Ahrens, J., Andeen, K., Atlee, D. W., … Bartelt, M. (2006). Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 97(22). doi:10.1103/physrevlett.97.221101 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astroparticle Physics, 36(1), 204-210. doi:10.1016/j.astropartphys.2012.06.001 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters B, 714(2-5), 224-230. doi:10.1016/j.physletb.2012.07.002 es_ES
dc.description.references Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 es_ES
dc.description.references Aglietta, M., Antonioli, P., Bari, G., Castagnoli, C., Fulgione, W., Galeotti, P., … Zichichi, A. (2004). Search for low energy ν in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001. Astronomy & Astrophysics, 421(2), 399-405. doi:10.1051/0004-6361:20040244 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Amram, P., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2005). Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 132-141. doi:10.1016/j.nima.2005.09.035 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098 es_ES
dc.description.references Aguilar, J. A., Albert, A., Anton, G., Anvar, S., Ardid, M., Assis Jesus, A. C., … Baret, B. (2010). Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector. Astroparticle Physics, 34(3), 179-184. doi:10.1016/j.astropartphys.2010.07.001 es_ES
dc.description.references Aguilar, J. A., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Search for a diffuse flux of high-energy <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>ν</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math> with the ANTARES neutrino telescope. Physics Letters B, 696(1-2), 16-22. doi:10.1016/j.physletb.2010.11.070 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003 es_ES
dc.description.references Alvarez-Muñiz, J., & Halzen, F. (2001). 1020 eVcosmic-ray and particle physics with kilometer-scale neutrino telescopes. Physical Review D, 63(3). doi:10.1103/physrevd.63.037302 es_ES
dc.description.references Amram, P., Anghinolfi, M., Anvar, S., Ardellier-Desages, F. ., Aslanides, E., Aubert, J.-J., … Battaglieri, M. (2003). Sedimentation and fouling of optical surfaces at the ANTARES site. Astroparticle Physics, 19(2), 253-267. doi:10.1016/s0927-6505(02)00202-5 es_ES
dc.description.references Anchordoqui, L., & Halzen, F. (2006). IceHEP high energy physics at the South Pole. Annals of Physics, 321(11), 2660-2716. doi:10.1016/j.aop.2005.11.015 es_ES
dc.description.references Ando, S., & Beacom, J. F. (2005). Revealing the Supernova–Gamma-Ray Burst Connection with TeV Neutrinos. Physical Review Letters, 95(6). doi:10.1103/physrevlett.95.061103 es_ES
dc.description.references Aso, Y., Márka, Z., Finley, C., Dwyer, J., Kotake, K., & Márka, S. (2008). Search method for coincident events from LIGO and IceCube detectors. Classical and Quantum Gravity, 25(11), 114039. doi:10.1088/0264-9381/25/11/114039 es_ES
dc.description.references ATHAR, H., KIM, C. S., & LEE, J. (2006). INTRINSIC AND OSCILLATED ASTROPHYSICAL NEUTRINO FLAVOR RATIOS REVISITED. Modern Physics Letters A, 21(13), 1049-1065. doi:10.1142/s021773230602038x es_ES
dc.description.references Baret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001 es_ES
dc.description.references Barthelmy, S. D., Barbier, L. M., Cummings, J. R., Fenimore, E. E., Gehrels, N., Hullinger, D., … Tueller, J. (2005). The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Science Reviews, 120(3-4), 143-164. doi:10.1007/s11214-005-5096-3 es_ES
dc.description.references Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101 es_ES
dc.description.references Bazin, G., Palanque-Delabrouille, N., Rich, J., Ruhlmann-Kleider, V., Aubourg, E., Le Guillou, L., … Walker, E. S. (2009). The core-collapse rate from the Supernova Legacy Survey. Astronomy & Astrophysics, 499(3), 653-660. doi:10.1051/0004-6361/200911847 es_ES
dc.description.references Berezinsky, V., Sabancilar, E., & Vilenkin, A. (2011). Extremely high energy neutrinos from cosmic strings. Physical Review D, 84(8). doi:10.1103/physrevd.84.085006 es_ES
dc.description.references Bhattacharjee, P. (1989). Cosmic strings and ultrahigh-energy cosmic rays. Physical Review D, 40(12), 3968-3975. doi:10.1103/physrevd.40.3968 es_ES
dc.description.references Braccini, S., Barsotti, L., Bradaschia, C., Cella, G., Virgilio, A. D., Ferrante, I., … Gennai, A. (2005). Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 23(6), 557-565. doi:10.1016/j.astropartphys.2005.04.002 es_ES
dc.description.references Brady, P. R., Creighton, J. D. E., & Wiseman, A. G. (2004). Upper limits on gravitational-wave signals based on loudest events. Classical and Quantum Gravity, 21(20), S1775-S1781. doi:10.1088/0264-9381/21/20/020 es_ES
dc.description.references Bromberg, O., Nakar, E., & Piran, T. (2011). ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? The Astrophysical Journal, 739(2), L55. doi:10.1088/2041-8205/739/2/l55 es_ES
dc.description.references Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. The Astrophysical Journal, 664(1), 416-434. doi:10.1086/519161 es_ES
dc.description.references Chapman, R., Tanvir, N. R., Priddey, R. S., & Levan, A. J. (2007). How common are long gamma-ray bursts in the local Universe? Monthly Notices of the Royal Astronomical Society: Letters, 382(1), L21-L25. doi:10.1111/j.1745-3933.2007.00381.x es_ES
dc.description.references Chatterji, S., Lazzarini, A., Stein, L., Sutton, P. J., Searle, A., & Tinto, M. (2006). Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Physical Review D, 74(8). doi:10.1103/physrevd.74.082005 es_ES
dc.description.references Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171 es_ES
dc.description.references Corsi, A., & Owen, B. J. (2011). Maximum gravitational-wave energy emissible in magnetar flares. Physical Review D, 83(10). doi:10.1103/physrevd.83.104014 es_ES
dc.description.references Creighton, J. D. E., & Anderson, W. G. (2011). Gravitational-Wave Physics and Astronomy. doi:10.1002/9783527636037 es_ES
dc.description.references Damour, T., & Vilenkin, A. (2000). Gravitational Wave Bursts from Cosmic Strings. Physical Review Letters, 85(18), 3761-3764. doi:10.1103/physrevlett.85.3761 es_ES
dc.description.references Damour, T., & Vilenkin, A. (2001). Gravitational wave bursts from cusps and kinks on cosmic strings. Physical Review D, 64(6). doi:10.1103/physrevd.64.064008 es_ES
dc.description.references Davies, M. B., King, A., Rosswog, S., & Wynn, G. (2002). Gamma-Ray Bursts, Supernova Kicks, and Gravitational Radiation. The Astrophysical Journal, 579(2), L63-L66. doi:10.1086/345288 es_ES
dc.description.references Dietz, A., Fotopoulos, N., Singer, L., & Cutler, C. (2013). Outlook for detection of GW inspirals by GRB-triggered searches in the advanced detector era. Physical Review D, 87(6). doi:10.1103/physrevd.87.064033 es_ES
dc.description.references Dimmelmeier, H., Ott, C. D., Marek, A., & Janka, H.-T. (2008). Gravitational wave burst signal from core collapse of rotating stars. Physical Review D, 78(6). doi:10.1103/physrevd.78.064056 es_ES
dc.description.references Faber, J. A., & Rasio, F. A. (2012). Binary Neutron Star Mergers. Living Reviews in Relativity, 15(1). doi:10.12942/lrr-2012-8 es_ES
dc.description.references Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034 es_ES
dc.description.references Fryer, C. L., & New, K. C. B. (2011). Gravitational Waves from Gravitational Collapse. Living Reviews in Relativity, 14(1). doi:10.12942/lrr-2011-1 es_ES
dc.description.references Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). Gamma-Ray Bursts in theSwiftEra. Annual Review of Astronomy and Astrophysics, 47(1), 567-617. doi:10.1146/annurev.astro.46.060407.145147 es_ES
dc.description.references Gehrels, N. (2004). The Swift Gamma-Ray Burst Mission. AIP Conference Proceedings. doi:10.1063/1.1810924 es_ES
dc.description.references Gill, R., & Heyl, J. S. (2010). On the trigger mechanisms for soft gamma-ray repeater giant flares. Monthly Notices of the Royal Astronomical Society, 407(3), 1926-1932. doi:10.1111/j.1365-2966.2010.17038.x es_ES
dc.description.references Gorham, P. W., Allison, P., Baughman, B. M., Beatty, J. J., Belov, K., Besson, D. Z., … Wang, Y. (2010). Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment. Physical Review D, 82(2). doi:10.1103/physrevd.82.022004 es_ES
dc.description.references Guetta, D., & Piran, T. (2006). The BATSE-Swift luminosity and redshift distributions of short-duration GRBs. Astronomy & Astrophysics, 453(3), 823-828. doi:10.1051/0004-6361:20054498 es_ES
dc.description.references Guetta, D., Piran, T., & Waxman, E. (2005). The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts. The Astrophysical Journal, 619(1), 412-419. doi:10.1086/423125 es_ES
dc.description.references Guetta, D., & Stella, L. (2008). Short γ-ray bursts and gravitational waves from dynamically formed merging binaries. Astronomy & Astrophysics, 498(2), 329-333. doi:10.1051/0004-6361:200810493 es_ES
dc.description.references Guetta, D., & Della Valle, M. (2007). On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae. The Astrophysical Journal, 657(2), L73-L76. doi:10.1086/511417 es_ES
dc.description.references Guetta, D., Hooper, D., Alvarez-Muñiz, J., Halzen, F., & Reuveni, E. (2004). Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astroparticle Physics, 20(4), 429-455. doi:10.1016/s0927-6505(03)00211-1 es_ES
dc.description.references Harry, G. M. (2010). Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity, 27(8), 084006. doi:10.1088/0264-9381/27/8/084006 es_ES
dc.description.references He, H.-N., Liu, R.-Y., Wang, X.-Y., Nagataki, S., Murase, K., & Dai, Z.-G. (2012). ICECUBE NONDETECTION OF GAMMA-RAY BURSTS: CONSTRAINTS ON THE FIREBALL PROPERTIES. The Astrophysical Journal, 752(1), 29. doi:10.1088/0004-637x/752/1/29 es_ES
dc.description.references Hernández-Rey, J. J. (2009). Neutrino telescopes in the Mediterranean sea. Journal of Physics: Conference Series, 171, 012047. doi:10.1088/1742-6596/171/1/012047 es_ES
dc.description.references Hill, C. T., Schramm, D. N., & Walker, T. P. (1987). Ultra-high-energy cosmic rays from superconducting cosmic strings. Physical Review D, 36(4), 1007-1016. doi:10.1103/physrevd.36.1007 es_ES
dc.description.references Horiuchi, S., & Ando, S. (2008). High-energy neutrinos from reverse shocks in choked and successful relativistic jets. Physical Review D, 77(6). doi:10.1103/physrevd.77.063007 es_ES
dc.description.references Hümmer, S., Baerwald, P., & Winter, W. (2012). Neutrino Emission from Gamma-Ray Burst Fireballs, Revised. Physical Review Letters, 108(23). doi:10.1103/physrevlett.108.231101 es_ES
dc.description.references Hurley, K. (2011). Soft gamma repeaters. Advances in Space Research, 47(8), 1326-1331. doi:10.1016/j.asr.2010.03.001 es_ES
dc.description.references Ioka, K. (2001). Magnetic deformation of magnetars for the giant flares of the soft gamma-ray repeaters. Monthly Notices of the Royal Astronomical Society, 327(2), 639-662. doi:10.1046/j.1365-8711.2001.04756.x es_ES
dc.description.references Ioka, K., Razzaque, S., Kobayashi, S., & Meszaros, P. (2005). TeV‐PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806−20. The Astrophysical Journal, 633(2), 1013-1017. doi:10.1086/466514 es_ES
dc.description.references Khokhlov, A. M., Höflich, P. A., Oran, E. S., Wheeler, J. C., Wang, L., & Chtchelkanova, A. Y. (1999). Jet-induced Explosions of Core Collapse Supernovae. The Astrophysical Journal, 524(2), L107-L110. doi:10.1086/312305 es_ES
dc.description.references Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General, 9(8), 1387-1398. doi:10.1088/0305-4470/9/8/029 es_ES
dc.description.references Kiuchi, K., Shibata, M., Montero, P. J., & Font, J. A. (2011). Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.251102 es_ES
dc.description.references Kobayashi, S., & Meszaros, P. (2003). Gravitational Radiation from Gamma‐Ray Burst Progenitors. The Astrophysical Journal, 589(2), 861-870. doi:10.1086/374733 es_ES
dc.description.references Kobayashi, S., & Mészáros, P. (2003). Polarized Gravitational Waves from Gamma-Ray Bursts. The Astrophysical Journal, 585(2), L89-L92. doi:10.1086/374307 es_ES
dc.description.references Kotake, K. (2013). Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Comptes Rendus Physique, 14(4), 318-351. doi:10.1016/j.crhy.2013.01.008 es_ES
dc.description.references Lazzati, D., Morsony, B. J., Blackwell, C. H., & Begelman, M. C. (2012). UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS. The Astrophysical Journal, 750(1), 68. doi:10.1088/0004-637x/750/1/68 es_ES
dc.description.references Le, T., & Dermer, C. D. (2007). On the Redshift Distribution of Gamma‐Ray Bursts in theSwiftEra. The Astrophysical Journal, 661(1), 394-415. doi:10.1086/513460 es_ES
dc.description.references Levin, Y., & van Hoven, M. (2011). On the excitation of f modes and torsional modes by magnetar giant flares. Monthly Notices of the Royal Astronomical Society, 418(1), 659-663. doi:10.1111/j.1365-2966.2011.19515.x es_ES
dc.description.references Li, Z. (2012). Note on the normalization of predicted gamma-ray burst neutrino flux. Physical Review D, 85(2). doi:10.1103/physrevd.85.027301 es_ES
dc.description.references Liang, E., Zhang, B., Virgili, F., & Dai, Z. G. (2007). Low‐Luminosity Gamma‐Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. The Astrophysical Journal, 662(2), 1111-1118. doi:10.1086/517959 es_ES
dc.description.references Lunardini, C., & Sabancilar, E. (2012). Cosmic strings as emitters of extremely high energy neutrinos. Physical Review D, 86(8). doi:10.1103/physrevd.86.085008 es_ES
dc.description.references Lyutikov, M. (2006). Magnetar giant flares and afterglows as relativistic magnetized explosions. Monthly Notices of the Royal Astronomical Society, 367(4), 1594-1602. doi:10.1111/j.1365-2966.2006.10069.x es_ES
dc.description.references MacFadyen, A. I., & Woosley, S. E. (1999). Collapsars: Gamma‐Ray Bursts and Explosions in «Failed Supernovae». The Astrophysical Journal, 524(1), 262-289. doi:10.1086/307790 es_ES
dc.description.references Mattila, S., Dahlen, T., Efstathiou, A., Kankare, E., Melinder, J., Alonso-Herrero, A., … Östlin, G. (2012). CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS. The Astrophysical Journal, 756(2), 111. doi:10.1088/0004-637x/756/2/111 es_ES
dc.description.references Meegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., … Wilson-Hodge, C. (2009). THEFERMIGAMMA-RAY BURST MONITOR. The Astrophysical Journal, 702(1), 791-804. doi:10.1088/0004-637x/702/1/791 es_ES
dc.description.references Mereghetti, S. (2011). The multi-wavelength properties of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters. Advances in Space Research, 47(8), 1317-1325. doi:10.1016/j.asr.2010.08.031 es_ES
dc.description.references Mészáros, P. (2006). Gamma-ray bursts. Reports on Progress in Physics, 69(8), 2259-2321. doi:10.1088/0034-4885/69/8/r01 es_ES
dc.description.references Mészáros, P., & Waxman, E. (2001). TeV Neutrinos from Successful and Choked Gamma-Ray Bursts. Physical Review Letters, 87(17). doi:10.1103/physrevlett.87.171102 es_ES
dc.description.references Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. (2011). The protomagnetar model for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 413(3), 2031-2056. doi:10.1111/j.1365-2966.2011.18280.x es_ES
dc.description.references Modjaz, M. (2011). Stellar forensics with the supernova-GRB connection - Ludwig Biermann Award Lecture 2010. Astronomische Nachrichten, 332(5), 434-447. doi:10.1002/asna.201111562 es_ES
dc.description.references Mosquera Cuesta, H. J., & González, D. M. (2001). Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum. Physics Letters B, 500(3-4), 215-221. doi:10.1016/s0370-2693(01)00073-9 es_ES
dc.description.references Murase, K., & Nagataki, S. (2006). High Energy Neutrino Flashes from Far-Ultraviolet and X-Ray Flares in Gamma-Ray Bursts. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.051101 es_ES
dc.description.references Murase, K., Ioka, K., Nagataki, S., & Nakamura, T. (2006). High-Energy Neutrinos and Cosmic Rays from Low-Luminosity Gamma-Ray Bursts? The Astrophysical Journal, 651(1), L5-L8. doi:10.1086/509323 es_ES
dc.description.references NAKAR, E. (2007). Short-hard gamma-ray bursts. Physics Reports, 442(1-6), 166-236. doi:10.1016/j.physrep.2007.02.005 es_ES
dc.description.references Nakar, E., Gal‐Yam, A., & Fox, D. B. (2006). The Local Rate and the Progenitor Lifetimes of Short‐Hard Gamma‐Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational‐Wave Observatory. The Astrophysical Journal, 650(1), 281-290. doi:10.1086/505855 es_ES
dc.description.references Nissanke, S., Kasliwal, M., & Georgieva, A. (2013). IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION. The Astrophysical Journal, 767(2), 124. doi:10.1088/0004-637x/767/2/124 es_ES
dc.description.references O’Connor, E., & Ott, C. D. (2011). BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE. The Astrophysical Journal, 730(2), 70. doi:10.1088/0004-637x/730/2/70 es_ES
dc.description.references Ott, C. D. (2009). The gravitational-wave signature of core-collapse supernovae. Classical and Quantum Gravity, 26(6), 063001. doi:10.1088/0264-9381/26/6/063001 es_ES
dc.description.references Ott, C. D., Reisswig, C., Schnetter, E., O’Connor, E., Sperhake, U., Löffler, F., … Burrows, A. (2011). Dynamics and Gravitational Wave Signature of Collapsar Formation. Physical Review Letters, 106(16). doi:10.1103/physrevlett.106.161103 es_ES
dc.description.references Ott, C. D., Abdikamalov, E., O’Connor, E., Reisswig, C., Haas, R., Kalmus, P., … Schnetter, E. (2012). Correlated gravitational wave and neutrino signals from general-relativistic rapidly rotating iron core collapse. Physical Review D, 86(2). doi:10.1103/physrevd.86.024026 es_ES
dc.description.references Papaloizou, J. C., & Savonije, G. J. (1991). Instabilities in self-gravitating gaseous discs. Monthly Notices of the Royal Astronomical Society, 248(3), 353-369. doi:10.1093/mnras/248.3.353 es_ES
dc.description.references Papaloizou, J. C. B., & Pringle, J. E. (1984). The dynamical stability of differentially rotating discs with constant specific angular momentum. Monthly Notices of the Royal Astronomical Society, 208(4), 721-750. doi:10.1093/mnras/208.4.721 es_ES
dc.description.references Piran, T. (2005). The physics of gamma-ray bursts. Reviews of Modern Physics, 76(4), 1143-1210. doi:10.1103/revmodphys.76.1143 es_ES
dc.description.references Piro, A. L., & Pfahl, E. (2007). Fragmentation of Collapsar Disks and the Production of Gravitational Waves. The Astrophysical Journal, 658(2), 1173-1176. doi:10.1086/511672 es_ES
dc.description.references Popham, R., Woosley, S. E., & Fryer, C. (1999). Hyperaccreting Black Holes and Gamma‐Ray Bursts. The Astrophysical Journal, 518(1), 356-374. doi:10.1086/307259 es_ES
dc.description.references Pradier, T. (2009). Coincidences between gravitational wave interferometers and high energy neutrino telescopes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(1), 268-274. doi:10.1016/j.nima.2008.12.055 es_ES
dc.description.references Razzaque, S., Mészáros, P., & Waxman, E. (2003). Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 68(8). doi:10.1103/physrevd.68.083001 es_ES
dc.description.references Razzaque, S., Mészáros, P., & Waxman, E. (2004). TeV Neutrinos from Core Collapse Supernovae and Hypernovae. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.181101 es_ES
dc.description.references RAZZAQUE, S., MÉSZÁROS, P., & WAXMAN, E. (2005). HIGH ENERGY NEUTRINOS FROM A SLOW JET MODEL OF CORE COLLAPSE SUPERNOVAE. Modern Physics Letters A, 20(31), 2351-2367. doi:10.1142/s0217732305018414 es_ES
dc.description.references Scheidegger, S., Käppeli, R., Whitehouse, S. C., Fischer, T., & Liebendörfer, M. (2010). The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse. Astronomy and Astrophysics, 514, A51. doi:10.1051/0004-6361/200913220 es_ES
dc.description.references Scholten, O., Buitink, S., Bacelar, J., Braun, R., de Bruyn, A. G., Falcke, H., … al Yahyaoui, R. (2009). First results of the NuMoon experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604(1-2), S102-S105. doi:10.1016/j.nima.2009.03.037 es_ES
dc.description.references Shibata, M., & Taniguchi, K. (2011). Coalescence of Black Hole-Neutron Star Binaries. Living Reviews in Relativity, 14(1). doi:10.12942/lrr-2011-6 es_ES
dc.description.references Siemens, X., Creighton, J., Maor, I., Majumder, S. R., Cannon, K., & Read, J. (2006). Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints. Physical Review D, 73(10). doi:10.1103/physrevd.73.105001 es_ES
dc.description.references Soderberg, A. M., Kulkarni, S. R., Nakar, E., Berger, E., Cameron, P. B., Fox, D. B., … McCarthy, P. J. (2006). Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 442(7106), 1014-1017. doi:10.1038/nature05087 es_ES
dc.description.references Soderberg, A. M., Chakraborti, S., Pignata, G., Chevalier, R. A., Chandra, P., Ray, A., … Torres, M. A. P. (2010). A relativistic type Ibc supernova without a detected γ-ray burst. Nature, 463(7280), 513-515. doi:10.1038/nature08714 es_ES
dc.description.references Sutton, P. J., Jones, G., Chatterji, S., Kalmus, P., Leonor, I., Poprocki, S., … Was, M. (2010). X-Pipeline: an analysis package for autonomous gravitational-wave burst searches. New Journal of Physics, 12(5), 053034. doi:10.1088/1367-2630/12/5/053034 es_ES
dc.description.references Takiwaki, T., & Kotake, K. (2011). GRAVITATIONAL WAVE SIGNATURES OF MAGNETOHYDRODYNAMICALLY DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS. The Astrophysical Journal, 743(1), 30. doi:10.1088/0004-637x/743/1/30 es_ES
dc.description.references Thompson, C., & Duncan, R. C. (1995). The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts. Monthly Notices of the Royal Astronomical Society, 275(2), 255-300. doi:10.1093/mnras/275.2.255 es_ES
dc.description.references Van Putten, M. H. P. M., Levinson, A., Lee, H. K., Regimbau, T., Punturo, M., & Harry, G. M. (2004). Gravitational radiation from gamma-ray burst-supernovae as observational opportunities for LIGO and VIRGO. Physical Review D, 69(4). doi:10.1103/physrevd.69.044007 es_ES
dc.description.references Virgili, F. J., Liang, E.-W., & Zhang, B. (2009). Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints. Monthly Notices of the Royal Astronomical Society, 392(1), 91-103. doi:10.1111/j.1365-2966.2008.14063.x es_ES
dc.description.references Wang, X.-Y., Razzaque, S., Mészáros, P., & Dai, Z.-G. (2007). High-energy cosmic rays and neutrinos from semirelativistic hypernovae. Physical Review D, 76(8). doi:10.1103/physrevd.76.083009 es_ES
dc.description.references Wąs, M., Sutton, P. J., Jones, G., & Leonor, I. (2012). Performance of an externally triggered gravitational-wave burst search. Physical Review D, 86(2). doi:10.1103/physrevd.86.022003 es_ES
dc.description.references Waxman, E., & Bahcall, J. (1997). High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters, 78(12), 2292-2295. doi:10.1103/physrevlett.78.2292 es_ES
dc.description.references Waxman, E., & Loeb, A. (2001). TeV Neutrinos and GeV Photons from Shock Breakout in Supernovae. Physical Review Letters, 87(7). doi:10.1103/physrevlett.87.071101 es_ES
dc.description.references White, D. J., Daw, E. J., & Dhillon, V. S. (2011). A list of galaxies for gravitational wave searches. Classical and Quantum Gravity, 28(8), 085016. doi:10.1088/0264-9381/28/8/085016 es_ES
dc.description.references Winter, W. (2012). Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects. Advances in High Energy Physics, 2012, 1-41. doi:10.1155/2012/586413 es_ES
dc.description.references Woosley, S. E. (1993). Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal, 405, 273. doi:10.1086/172359 es_ES
dc.description.references Woosley, S. E., & Heger, A. (2006). The Progenitor Stars of Gamma‐Ray Bursts. The Astrophysical Journal, 637(2), 914-921. doi:10.1086/498500 es_ES
dc.description.references Zhang, B.-B., Fan, Y.-Z., Shen, R.-F., Xu, D., Zhang, F.-W., Wei, D.-M., … Gehrels, N. (2012). GRB 120422A: A LOW-LUMINOSITY GAMMA-RAY BURST DRIVEN BY A CENTRAL ENGINE. The Astrophysical Journal, 756(2), 190. doi:10.1088/0004-637x/756/2/190 es_ES
dc.description.references Zink, B., Lasky, P. D., & Kokkotas, K. D. (2012). Are gravitational waves from giant magnetar flares observable? Physical Review D, 85(2). doi:10.1103/physrevd.85.024030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem