- -

Radial Photonic Crystal for detection of frequency and position of radiation sources

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radial Photonic Crystal for detection of frequency and position of radiation sources

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Díaz Rubio, Ana es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Cervera Moreno, Francisco Salvador es_ES
dc.contributor.author Kirleis, M. A. es_ES
dc.contributor.author Pique, A. es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2016-05-06T12:50:41Z
dc.date.available 2016-05-06T12:50:41Z
dc.date.issued 2012-08-06
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/63734
dc.description.abstract Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministry of Science and Innovation under Grants TEC 2010-19751 and CSD2008-00066 (Consolider program) and by the U.S. Office of Naval Research under Grant N000140910554. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject GROUND-PLANE CLOAK es_ES
dc.subject METAMATERIALS es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radial Photonic Crystal for detection of frequency and position of radiation sources es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep00558
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Carbonell Olivares, J.; Díaz Rubio, A.; Torrent Martí, D.; Cervera Moreno, FS.; Kirleis, MA.; Pique, A.; Sánchez-Dehesa Moreno-Cid, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports. 2(558):1-8. https://doi.org/10.1038/srep00558 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/srep00558 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 558 es_ES
dc.relation.senia 227812 es_ES
dc.identifier.pmid 22870387 en_EN
dc.identifier.pmcid PMC3412275 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Pendry, J., Schurig, D. & Smith, D. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). es_ES
dc.description.references Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006). es_ES
dc.description.references Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). es_ES
dc.description.references Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). es_ES
dc.description.references Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). es_ES
dc.description.references Narimanov, E. E. & Kildishev, A. V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009). es_ES
dc.description.references Grbic, A. & Eleftheriades, G. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004). es_ES
dc.description.references Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nature Communications 1, 21 (2010). es_ES
dc.description.references Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005). es_ES
dc.description.references Zhang, F. et al. Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial. IEEE Trans. Microwave Theory Tech. 56, 2566–2573 (2008). es_ES
dc.description.references Baena, J., Marques, R., Medina, F. & Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004). es_ES
dc.description.references Carbonell, J., Torrent, D., Diaz-Rubio, A. & Sanchez-Dehesa, J. Multidisciplinary approach to cylindrical anisotropic metamaterials. New J. Phys. 13, 103034 (2011). es_ES
dc.description.references Torrent, D. & Sanchez-Dehesa, J. Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Phys. Rev. Lett. 103, 064301 (2009). es_ES
dc.description.references Torrent, D. & Sanchez-Dehesa, J. Acoustic resonances in two-dimensional radial sonic crystal shells. New J. Phys. 12, 073034 (2010). es_ES
dc.description.references Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007). es_ES
dc.description.references Marques, R., Medina, F. & Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440 (2002). es_ES
dc.description.references Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). es_ES
dc.description.references Pollock, J. G. & Iyer, A. K. Effective-Medium Properties of Cylindrical Transmission-Line Metamaterials. IEEE Antennas and Wireless Propagation Letters 10, 1491–1494 (2011). es_ES
dc.description.references Comsol, A. B. (Sweden). Comsol Multiphysics (v. 4.1). (2010). es_ES
dc.description.references Ansoft. High Frequency Structure Simulator (HFSS), v.14. (2012). es_ES
dc.description.references Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005). es_ES
dc.description.references Yang, Y. et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Nature Communications 3, 651 (2012). es_ES
dc.description.references Liu, R. et al. Broadband Ground-Plane Cloak. Science 323, 366–369 (2009). es_ES
dc.description.references Cheng, Q., Cui, T. J., Jiang, W. X. & Cai, B. G. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006 (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem