Mostrar el registro sencillo del ítem
dc.contributor.author | García Meca, Carlos | es_ES |
dc.contributor.author | Carloni, S. | es_ES |
dc.contributor.author | Barcelo, C. | es_ES |
dc.contributor.author | Jannes, G. | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2016-05-09T08:13:09Z | |
dc.date.available | 2016-05-09T08:13:09Z | |
dc.date.issued | 2013-06-18 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10251/63767 | |
dc.description.abstract | Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an analogue transformation acoustics formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. | es_ES |
dc.description.sponsorship | This work was developed under the framework of the ARIADNA contract 4000104572/11/NL/KML of the European Space Agency. A. M. and J. S.-D. also acknowledge support from Consolider EMET project (CSD2008-00066), A. M. from project TEC2011-28664-C02-02, J.S.-D. from US Office of Naval Research, and C. B. and G. J. from the project FIS2008-06078-C03-01. We thank Reme Miralles for her help with Fig. 2. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Transformation acoustics | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Analogue spacetimes | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Analogue Transformations in Physics and their Application to Acoustics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/srep02009 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ESA//4000104572%2F11%2FNL%2FKML/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2008-06078-C03-01/ES/SIMETRIA, METODOS NUMERICOS Y MODELOS ANALOGOS EN GRAVITACION CLASICA Y CUANTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García Meca, C.; Carloni, S.; Barcelo, C.; Jannes, G.; Sánchez-Dehesa Moreno-Cid, J.; Martínez Abietar, AJ. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports. 3(2009):1-5. https://doi.org/10.1038/srep02009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/srep02009 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 2009 | es_ES |
dc.relation.senia | 248823 | es_ES |
dc.identifier.pmid | 23774575 | en_EN |
dc.identifier.pmcid | PMC3684807 | en_EN |
dc.contributor.funder | European Space Agency | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). | es_ES |
dc.description.references | Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006). | es_ES |
dc.description.references | Schurig, D. et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 314, 977–980 (2006). | es_ES |
dc.description.references | Shalaev, V. M. Transforming Light. Science 322, 384–386 (2008). | es_ES |
dc.description.references | Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Invisibility and inverse problems. B. Am. Math. Soc. 46, 55–97 (2009). | es_ES |
dc.description.references | Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5, 687–692 (2009). | es_ES |
dc.description.references | Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010). | es_ES |
dc.description.references | Leonhardt, U. & Philbin, T. Geometry and light. The science of invisibility (Dover Publications, 2010). | es_ES |
dc.description.references | Pendry, J. B., Aubry, A., Smith, D. R. & Maier, S. A. Transformation Optics and Subwavelength Control of Light. Science 337, 549 (2012). | es_ES |
dc.description.references | Post, E. G. Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Interscience Publishers, New York, 1962). | es_ES |
dc.description.references | Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007). | es_ES |
dc.description.references | Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007). | es_ES |
dc.description.references | Norris, A. N. Acoustic metafluids. J. Acoust. Soc. Am. 125, 839 (2009). | es_ES |
dc.description.references | Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D: Appl. Phys. 43, 113001 (2010). | es_ES |
dc.description.references | Zhang, S., Genov, D. A., Sun, C. & Zhang, X. Cloaking of Matter Waves. Phys. Rev. Lett. 100, 123002 (2008). | es_ES |
dc.description.references | McCall, M. W., Favaro, A., Kinsler, P. & Boardman, A. A spacetime cloak, or a history editor. J. Opt. 13, 024003 (2011). | es_ES |
dc.description.references | Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012). | es_ES |
dc.description.references | Cummer, S. A. & Thompson, R. T. Frequency conversion by exploiting time in transformation optics. J. Opt. 13, 024007 (2011). | es_ES |
dc.description.references | Barceló, C., Liberati, S. & Visser, M. Analogue Gravity. Living Rev. Relativity 14, 3 (2011). | es_ES |
dc.description.references | Visser, M. Acoustic black holes: Horizons, ergospheres and Hawking radiation. Class. Quant. Grav. 15, 1767 (1998). | es_ES |
dc.description.references | Barceló, C. & Jannes, G. A Real Lorentz-FitzGerald contraction. Found. Phys. 38, 191 (2008). | es_ES |
dc.description.references | Bergmann, P. G. The Wave Equation in a Medium with a Variable Index of Refraction. J. Acoust. Soc. Am. 17, 329 (1946). | es_ES |
dc.description.references | Torrent, D., Håkansson, A., Cervera, F. & Sánchez-Dehesa, J. Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006). | es_ES |
dc.description.references | Torrent, D. & Sánchez-Dehesa, J. Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006). | es_ES |
dc.description.references | Unruh, W. G. Experimental black hole evaporation? Phys. Rev. Lett. 46, 1351 (1981). | es_ES |
dc.description.references | Li, J. & Pendry, J. B. Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101, 203901 (2008). | es_ES |
dc.description.references | Popa, B. I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011). | es_ES |
dc.description.references | Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Black holes in Bose-Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000). | es_ES |
dc.description.references | Lahav, O., Itah, A., Blumkin, A., Gordon, C. & Steinhauer, J. Realization of a sonic black hole analogue in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010). | es_ES |
dc.description.references | Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009). | es_ES |
dc.description.references | Cortijo, A. & Vozmediano, M. A. H. Electronic properties of curved graphene sheets. Europhys. Lett. 77, 47002 (2007). | es_ES |
dc.description.references | Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291 (2011). | es_ES |