Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
Schurig, D. et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 314, 977–980 (2006).
[+]
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
Schurig, D. et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 314, 977–980 (2006).
Shalaev, V. M. Transforming Light. Science 322, 384–386 (2008).
Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Invisibility and inverse problems. B. Am. Math. Soc. 46, 55–97 (2009).
Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5, 687–692 (2009).
Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).
Leonhardt, U. & Philbin, T. Geometry and light. The science of invisibility (Dover Publications, 2010).
Pendry, J. B., Aubry, A., Smith, D. R. & Maier, S. A. Transformation Optics and Subwavelength Control of Light. Science 337, 549 (2012).
Post, E. G. Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Interscience Publishers, New York, 1962).
Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007).
Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).
Norris, A. N. Acoustic metafluids. J. Acoust. Soc. Am. 125, 839 (2009).
Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D: Appl. Phys. 43, 113001 (2010).
Zhang, S., Genov, D. A., Sun, C. & Zhang, X. Cloaking of Matter Waves. Phys. Rev. Lett. 100, 123002 (2008).
McCall, M. W., Favaro, A., Kinsler, P. & Boardman, A. A spacetime cloak, or a history editor. J. Opt. 13, 024003 (2011).
Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012).
Cummer, S. A. & Thompson, R. T. Frequency conversion by exploiting time in transformation optics. J. Opt. 13, 024007 (2011).
Barceló, C., Liberati, S. & Visser, M. Analogue Gravity. Living Rev. Relativity 14, 3 (2011).
Visser, M. Acoustic black holes: Horizons, ergospheres and Hawking radiation. Class. Quant. Grav. 15, 1767 (1998).
Barceló, C. & Jannes, G. A Real Lorentz-FitzGerald contraction. Found. Phys. 38, 191 (2008).
Bergmann, P. G. The Wave Equation in a Medium with a Variable Index of Refraction. J. Acoust. Soc. Am. 17, 329 (1946).
Torrent, D., Håkansson, A., Cervera, F. & Sánchez-Dehesa, J. Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006).
Torrent, D. & Sánchez-Dehesa, J. Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006).
Unruh, W. G. Experimental black hole evaporation? Phys. Rev. Lett. 46, 1351 (1981).
Li, J. & Pendry, J. B. Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101, 203901 (2008).
Popa, B. I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011).
Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Black holes in Bose-Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000).
Lahav, O., Itah, A., Blumkin, A., Gordon, C. & Steinhauer, J. Realization of a sonic black hole analogue in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
Cortijo, A. & Vozmediano, M. A. H. Electronic properties of curved graphene sheets. Europhys. Lett. 77, 47002 (2007).
Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291 (2011).
[-]