- -

Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

Mostrar el registro completo del ítem

Torres, V.; Ortuño Molinero, R.; Rodriguez-Ulibarri, P.; Griol Barres, A.; Martínez Abietar, AJ.; Navarro-Cia, M.; Beruete, M.... (2014). Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines. Scientific Reports. 4(3592):1-5. https://doi.org/10.1038/srep03592

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63770

Ficheros en el ítem

Metadatos del ítem

Título: Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines
Autor: Torres, Victor Ortuño Molinero, Rubén Rodriguez-Ulibarri, Pablo Griol Barres, Amadeu Martínez Abietar, Alejandro José Navarro-Cia, Miguel Beruete, Miguel Sorolla, Mario
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The ...[+]
Palabras clave: Metamateriales , Plasmónica , Terahercios , Inductancia , Magnetismo
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep03592
Editorial:
Nature Publishing Group
Versión del editor: http://dx.doi.org/10.1038/srep03592
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-01/ES/AVANZANDO EN PLASMONICA Y METAMATERIALES PARA SENSORES Y COMUNICACIONES/
info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/
info:eu-repo/grantAgreement/MICINN//RYC-2011-08221/ES/RYC-2011-08221/
info:eu-repo/grantAgreement/Gobierno de Navarra//055%2F01%2F11/
Agradecimientos:
In memoriam Prof. Mario Sorolla. Effort sponsored by Spanish Government under contracts Consolider "Engineering Metamaterials" CSD2008-00066, TEC2011-28664-C01 and TEC2011-28664-C02. V. T. acknowledges funding from Universidad ...[+]
Tipo: Artículo

References

Stanley, R. Plasmonics in the mid-infrared. Nature Photon. 6, 409–411 (2012).

Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. & Wolf, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

Editorial, Surface Plasmon Resurrection., Nature Photon. 6, 707 (2012). (10.1038/nphoton.2012.276). [+]
Stanley, R. Plasmonics in the mid-infrared. Nature Photon. 6, 409–411 (2012).

Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. & Wolf, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

Editorial, Surface Plasmon Resurrection., Nature Photon. 6, 707 (2012). (10.1038/nphoton.2012.276).

Ishimaru, A. Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991).

Beruete, M. et al. Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt. Lett. 29, 2500–2502 (2004).

Pendry, J. B., Martín-Moreno, L. & García-Vidal, F. J. Mimicking Surface Plasmons with Structured Surfaces. Science 305, 847 (2004).

Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and Waves in Communication Electronics (Wiley, New York, 1994).

Schelkunoff, S. A. The Impedance Concept and its Application to Problems of Reflection, Refraction, Shielding and Power Absorption. Bell Syst. Tech. J. 17, 17–48 (1938).

Marcuvitz, N. Waveguide Handbook (McGraw-Hill, London, 1986).

Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 7, 37–55 (1967).

Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

Sun, Y., Edwards, B., Alù, A. & Engheta, N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nature Mater. 11, 208–212 (2012).

Monticone, F., Estakhri, N. M. & Alù, A. Full Control of Nanoscale Optical Transmission with a Composite Metascreen. Phys. Rev. Lett. 110, 203903 (2013).

Veronis, G. & Fan, S. Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005).

Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel. Top. Quant. 14, 1462 (2008).

Staffaroni, M., Conway, J., Vedantam, S., Tang, J. & Yablonovitch, E. Circuit analysis in metal-optics. Phot. Nano. Fund. Appl. 10, 166–176 (2012).

Medina, F., Mesa, F. & Marqués, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE T. Microw. Theory 56, 3108–3120 (2008).

Beruete, M., Navarro-Cía, M., Kuznetsov, S. A. & Sorolla, M. Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission. Appl. Phys. Lett. 98, 014106 (2011).

Kuznetsov, S. A. et al. Regular and anomalous extraordinary optical transmission at the THz-gap. Opt. Express 17, 11730–11738 (2009).

Beruete, M., Navarro-Cía, M., Torres, V. & Sorolla, M. Redshifting extraordinary transmission by simple inductance addition. Phys. Rev. B 84, 075140 (2011).

Beruete, M. et al. Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays. Opt. Express 15, 1107–1014 (2007).

Ulrich, R. Modes of propagation on an open periodic wave-guide for the far infrared. Proceedings of the Symposium on Optical and Acoustical Micro-Electronics, 359–376 (Polytechnic Press, New York, 1974).

Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. App. Optics 37, 5271–5283 (1998).

Lloyd-Hughes, J. & Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Waves 33, 871–925 (2012).

J. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999).

Rosa, E. B. The self and mutual inductances of linear conductors. Nat. Bur. Stand. 4, 301–344 (1908).

Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L., Jr & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W. App. Optics 24, 4493–4499 (1985).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem