Mostrar el registro sencillo del ítem
dc.contributor.author | Torres, Victor | es_ES |
dc.contributor.author | Ortuño Molinero, Rubén | es_ES |
dc.contributor.author | Rodriguez-Ulibarri, Pablo | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Navarro-Cia, Miguel | es_ES |
dc.contributor.author | Beruete, Miguel | es_ES |
dc.contributor.author | Sorolla, Mario | es_ES |
dc.date.accessioned | 2016-05-09T09:07:09Z | |
dc.date.available | 2016-05-09T09:07:09Z | |
dc.date.issued | 2014-01-07 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10251/63770 | |
dc.description.abstract | We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. | es_ES |
dc.description.sponsorship | In memoriam Prof. Mario Sorolla. Effort sponsored by Spanish Government under contracts Consolider "Engineering Metamaterials" CSD2008-00066, TEC2011-28664-C01 and TEC2011-28664-C02. V. T. acknowledges funding from Universidad Publica de Navarra. P.R.-U. is sponsored by the Government of Navarra under funding program "Formacion de tecnologos" 055/01/11. M. N.-C. is supported by the Imperial College Junior Research Fellowship. M. B. acknowledges funding by the Spanish Government under the research contract program Ramon y Cajal RYC-2011-08221. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Metamateriales | es_ES |
dc.subject | Plasmónica | es_ES |
dc.subject | Terahercios | es_ES |
dc.subject | Inductancia | es_ES |
dc.subject | Magnetismo | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/srep03592 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-01/ES/AVANZANDO EN PLASMONICA Y METAMATERIALES PARA SENSORES Y COMUNICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RYC-2011-08221/ES/RYC-2011-08221/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Navarra//055%2F01%2F11/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Torres, V.; Ortuño Molinero, R.; Rodriguez-Ulibarri, P.; Griol Barres, A.; Martínez Abietar, AJ.; Navarro-Cia, M.; Beruete, M.... (2014). Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines. Scientific Reports. 4(3592):1-5. https://doi.org/10.1038/srep03592 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/srep03592 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 3592 | es_ES |
dc.relation.senia | 257674 | es_ES |
dc.identifier.pmid | 24393839 | en_EN |
dc.identifier.pmcid | PMC3882743 | en_EN |
dc.contributor.funder | Gobierno de Navarra | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Imperial College London | es_ES |
dc.contributor.funder | Universidad Pública de Navarra | es_ES |
dc.description.references | Stanley, R. Plasmonics in the mid-infrared. Nature Photon. 6, 409–411 (2012). | es_ES |
dc.description.references | Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. & Wolf, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). | es_ES |
dc.description.references | Editorial, Surface Plasmon Resurrection., Nature Photon. 6, 707 (2012). (10.1038/nphoton.2012.276). | es_ES |
dc.description.references | Ishimaru, A. Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991). | es_ES |
dc.description.references | Beruete, M. et al. Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt. Lett. 29, 2500–2502 (2004). | es_ES |
dc.description.references | Pendry, J. B., Martín-Moreno, L. & García-Vidal, F. J. Mimicking Surface Plasmons with Structured Surfaces. Science 305, 847 (2004). | es_ES |
dc.description.references | Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and Waves in Communication Electronics (Wiley, New York, 1994). | es_ES |
dc.description.references | Schelkunoff, S. A. The Impedance Concept and its Application to Problems of Reflection, Refraction, Shielding and Power Absorption. Bell Syst. Tech. J. 17, 17–48 (1938). | es_ES |
dc.description.references | Marcuvitz, N. Waveguide Handbook (McGraw-Hill, London, 1986). | es_ES |
dc.description.references | Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 7, 37–55 (1967). | es_ES |
dc.description.references | Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007). | es_ES |
dc.description.references | Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007). | es_ES |
dc.description.references | Sun, Y., Edwards, B., Alù, A. & Engheta, N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nature Mater. 11, 208–212 (2012). | es_ES |
dc.description.references | Monticone, F., Estakhri, N. M. & Alù, A. Full Control of Nanoscale Optical Transmission with a Composite Metascreen. Phys. Rev. Lett. 110, 203903 (2013). | es_ES |
dc.description.references | Veronis, G. & Fan, S. Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005). | es_ES |
dc.description.references | Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel. Top. Quant. 14, 1462 (2008). | es_ES |
dc.description.references | Staffaroni, M., Conway, J., Vedantam, S., Tang, J. & Yablonovitch, E. Circuit analysis in metal-optics. Phot. Nano. Fund. Appl. 10, 166–176 (2012). | es_ES |
dc.description.references | Medina, F., Mesa, F. & Marqués, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE T. Microw. Theory 56, 3108–3120 (2008). | es_ES |
dc.description.references | Beruete, M., Navarro-Cía, M., Kuznetsov, S. A. & Sorolla, M. Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission. Appl. Phys. Lett. 98, 014106 (2011). | es_ES |
dc.description.references | Kuznetsov, S. A. et al. Regular and anomalous extraordinary optical transmission at the THz-gap. Opt. Express 17, 11730–11738 (2009). | es_ES |
dc.description.references | Beruete, M., Navarro-Cía, M., Torres, V. & Sorolla, M. Redshifting extraordinary transmission by simple inductance addition. Phys. Rev. B 84, 075140 (2011). | es_ES |
dc.description.references | Beruete, M. et al. Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays. Opt. Express 15, 1107–1014 (2007). | es_ES |
dc.description.references | Ulrich, R. Modes of propagation on an open periodic wave-guide for the far infrared. Proceedings of the Symposium on Optical and Acoustical Micro-Electronics, 359–376 (Polytechnic Press, New York, 1974). | es_ES |
dc.description.references | Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. App. Optics 37, 5271–5283 (1998). | es_ES |
dc.description.references | Lloyd-Hughes, J. & Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Waves 33, 871–925 (2012). | es_ES |
dc.description.references | J. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999). | es_ES |
dc.description.references | Rosa, E. B. The self and mutual inductances of linear conductors. Nat. Bur. Stand. 4, 301–344 (1908). | es_ES |
dc.description.references | Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L., Jr & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W. App. Optics 24, 4493–4499 (1985). | es_ES |