- -

Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torres, Victor es_ES
dc.contributor.author Ortuño Molinero, Rubén es_ES
dc.contributor.author Rodriguez-Ulibarri, Pablo es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Navarro-Cia, Miguel es_ES
dc.contributor.author Beruete, Miguel es_ES
dc.contributor.author Sorolla, Mario es_ES
dc.date.accessioned 2016-05-09T09:07:09Z
dc.date.available 2016-05-09T09:07:09Z
dc.date.issued 2014-01-07
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/63770
dc.description.abstract We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. es_ES
dc.description.sponsorship In memoriam Prof. Mario Sorolla. Effort sponsored by Spanish Government under contracts Consolider "Engineering Metamaterials" CSD2008-00066, TEC2011-28664-C01 and TEC2011-28664-C02. V. T. acknowledges funding from Universidad Publica de Navarra. P.R.-U. is sponsored by the Government of Navarra under funding program "Formacion de tecnologos" 055/01/11. M. N.-C. is supported by the Imperial College Junior Research Fellowship. M. B. acknowledges funding by the Spanish Government under the research contract program Ramon y Cajal RYC-2011-08221. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Metamateriales es_ES
dc.subject Plasmónica es_ES
dc.subject Terahercios es_ES
dc.subject Inductancia es_ES
dc.subject Magnetismo es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep03592
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-01/ES/AVANZANDO EN PLASMONICA Y METAMATERIALES PARA SENSORES Y COMUNICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2011-08221/ES/RYC-2011-08221/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Navarra//055%2F01%2F11/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Torres, V.; Ortuño Molinero, R.; Rodriguez-Ulibarri, P.; Griol Barres, A.; Martínez Abietar, AJ.; Navarro-Cia, M.; Beruete, M.... (2014). Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines. Scientific Reports. 4(3592):1-5. https://doi.org/10.1038/srep03592 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/srep03592 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 3592 es_ES
dc.relation.senia 257674 es_ES
dc.identifier.pmid 24393839 en_EN
dc.identifier.pmcid PMC3882743 en_EN
dc.contributor.funder Gobierno de Navarra es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Imperial College London es_ES
dc.contributor.funder Universidad Pública de Navarra es_ES
dc.description.references Stanley, R. Plasmonics in the mid-infrared. Nature Photon. 6, 409–411 (2012). es_ES
dc.description.references Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. & Wolf, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). es_ES
dc.description.references Editorial, Surface Plasmon Resurrection., Nature Photon. 6, 707 (2012). (10.1038/nphoton.2012.276). es_ES
dc.description.references Ishimaru, A. Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991). es_ES
dc.description.references Beruete, M. et al. Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt. Lett. 29, 2500–2502 (2004). es_ES
dc.description.references Pendry, J. B., Martín-Moreno, L. & García-Vidal, F. J. Mimicking Surface Plasmons with Structured Surfaces. Science 305, 847 (2004). es_ES
dc.description.references Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and Waves in Communication Electronics (Wiley, New York, 1994). es_ES
dc.description.references Schelkunoff, S. A. The Impedance Concept and its Application to Problems of Reflection, Refraction, Shielding and Power Absorption. Bell Syst. Tech. J. 17, 17–48 (1938). es_ES
dc.description.references Marcuvitz, N. Waveguide Handbook (McGraw-Hill, London, 1986). es_ES
dc.description.references Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 7, 37–55 (1967). es_ES
dc.description.references Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007). es_ES
dc.description.references Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007). es_ES
dc.description.references Sun, Y., Edwards, B., Alù, A. & Engheta, N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nature Mater. 11, 208–212 (2012). es_ES
dc.description.references Monticone, F., Estakhri, N. M. & Alù, A. Full Control of Nanoscale Optical Transmission with a Composite Metascreen. Phys. Rev. Lett. 110, 203903 (2013). es_ES
dc.description.references Veronis, G. & Fan, S. Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005). es_ES
dc.description.references Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel. Top. Quant. 14, 1462 (2008). es_ES
dc.description.references Staffaroni, M., Conway, J., Vedantam, S., Tang, J. & Yablonovitch, E. Circuit analysis in metal-optics. Phot. Nano. Fund. Appl. 10, 166–176 (2012). es_ES
dc.description.references Medina, F., Mesa, F. & Marqués, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE T. Microw. Theory 56, 3108–3120 (2008). es_ES
dc.description.references Beruete, M., Navarro-Cía, M., Kuznetsov, S. A. & Sorolla, M. Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission. Appl. Phys. Lett. 98, 014106 (2011). es_ES
dc.description.references Kuznetsov, S. A. et al. Regular and anomalous extraordinary optical transmission at the THz-gap. Opt. Express 17, 11730–11738 (2009). es_ES
dc.description.references Beruete, M., Navarro-Cía, M., Torres, V. & Sorolla, M. Redshifting extraordinary transmission by simple inductance addition. Phys. Rev. B 84, 075140 (2011). es_ES
dc.description.references Beruete, M. et al. Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays. Opt. Express 15, 1107–1014 (2007). es_ES
dc.description.references Ulrich, R. Modes of propagation on an open periodic wave-guide for the far infrared. Proceedings of the Symposium on Optical and Acoustical Micro-Electronics, 359–376 (Polytechnic Press, New York, 1974). es_ES
dc.description.references Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. App. Optics 37, 5271–5283 (1998). es_ES
dc.description.references Lloyd-Hughes, J. & Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Waves 33, 871–925 (2012). es_ES
dc.description.references J. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999). es_ES
dc.description.references Rosa, E. B. The self and mutual inductances of linear conductors. Nat. Bur. Stand. 4, 301–344 (1908). es_ES
dc.description.references Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L., Jr & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W. App. Optics 24, 4493–4499 (1985). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem