- -

Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

Show full item record

Blanca Postigo, JM.; Montero Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; Díez Niclós, MJTDJ.; Francis, D.... (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 16(257):1-19. doi:10.1186/s12864-015-1444-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63841

Files in this item

Item Metadata

Title: Genomic variation in tomato, from wild ancestors to contemporary breeding accessions
Author: Blanca Postigo, José Miguel Montero Pau, Javier Sauvage, Christopher Bauchet, Guillermo Illa, Eudald Díez Niclós, Mª José Teresa de Jesús Francis, David Causse, Mathilde Van Der Knaap, Esther Klazina Maria Cañizares Sales, Joaquín
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] Background: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm ...[+]
Subjects: Solanum lycopersicum , Solanum pimpinellifolium , SolCAP array , Origin , Variability , Genome , Fruit size genes , Domestication
Copyrigths: Reconocimiento (by)
BMC Genomics. (issn: 1471-2164 )
DOI: 10.1186/s12864-015-1444-1
BioMed Central
Publisher version: http://dx.doi.org/10.1186/s12864-015-1444-1
Project ID:
USDA/NIFA USDA AFRI 2013-67013-21229
We are grateful to the gene banks for their collections that made this study possible. We thank Syngenta Seeds for providing genotyping data for 42 accessions. We would like to thank the Supercomputing and Bioinnovation ...[+]
Type: Artículo


Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science (80-). 1997;277:1063–6.

Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.

Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 2002;42:1780. [+]
Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science (80-). 1997;277:1063–6.

Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.

Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 2002;42:1780.

Weigel D, Nordborg M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol. 2005;138:567–8.

Peralta IE, Spooner DM, Knapp S, Anderson C. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr. 2008;84:1–186.

Rick CM, Fobes JF. Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club. 1975;102:376–84.

Zuriaga E, Blanca J, Nuez F. Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol. 2008;56:663–78.

Zuriaga E, Blanca J, Cordero L, Sifres A, Blas-Cerdán WG, Morales R, et al. Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol. 2008;56:39–51.

Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One. 2012;7:e48198.

Rick CM. Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agrar. 1976;30:249–59.

Rick CM, Holle M. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot. 1990;44:69–78.

Nakazato T, Franklin RA, Kirk BC, Housworth EA. Population structure, demographic history, and evolutionary patterns of a green-fruited tomato, Solanum peruvianum (Solanaceae), revealed by spatial genetics analyses. Am J Bot. 2012;99:1207–16.

Rick CM, Butler L. Cytogenetics of the Tomato. Adv Genet. 1956;8:267–382. Advances in Genetics.

Jenkins JA. The origin of the cultivated tomato. Econ Bot. 1948;2:379–92.

Nesbitt TC, Tanksley SD. Comparative sequencing in the genus lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics. 2002;162:365–79.

Ranc N, Muños S, Santoni S, Causse M. A clarified position for Solanum lycopersicum var cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 2008;8:130.

De Candolle A. Origin of cultivated plants. 2nd ed. London: Trench, Paul; 1886.

Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet. 1990;80:437–48.

Williams CE, Clair DAS. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome. 1993;36:619–30.

Park YH, West MAL, St Clair DA. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L). Genome. 2004;47:510–8.

Sim S-C, Robbins MD, Van Deynze A, Michel AP, Francis DM. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity (Edinb). 2011;106:927–35.

Sim S-C, Robbins MD, Chilcott C, Zhu T, Francis DM. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L) reveals patterns of SNP variation associated with breeding. BMC Genomics. 2009;10:466.

Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, et al. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One. 2012;7:e40563.

Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289:85–8.

Liu J, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A. 2002;99:13302–6.

Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008;319:1527–30.

Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet. 2008;40:800–4.

Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, et al. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 2011;156:2244–54.

Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A. 2013;110:17125–30.

Rodríguez GR, Muños S, Anderson C, Sim S-C, Michel A, Causse M, et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 2011;156:275–85.

Sim S-C, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, et al. High-density SNP genotyping of tomato (Solanum lycopersicum L) reveals patterns of genetic variation due to breeding. PLoS One. 2012;7:e45520.

Sauvage C, Segura V, Bauchet G, Stevens R, Thi Do P, Nikoloski Z, et al. Genome Wide Association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014;165:1120–32.

Hamilton JP, Sim S-C, Stoffel K, Van Deynze A, Buell CR, Francis DM. Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome J. 2012;5:17.

Patterson NJ, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

Kosman E, Leonard KJ. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol. 2005;14:415–24.

Adler D. vioplot: Violin plot. 2005.

Jost L. Gst and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26.

Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Ecol Evol. 2006;23:254–67.

Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, et al. PyCogent: a toolkit for making sense from sequence. Genome Biol. 2007;8:R171.

Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008;24:2498–504.

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829.

R Core Team. R: A Language and Environment for Statistical Computing. 2013.

Sinnot RS. Virtues of the haversine. Sky Telesc. 1984;68:159.

Hijmans RJ, Etten JV. raster: Geographic data analysis and Modeling. 2013.

Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol. 2012;29:1917–32.

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.

Rambaut A. Tracer v.1.5. 2009.

Huang Z, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet. 2011;123:465–74.

Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, et al. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 2010;22:1057–73.

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989.

Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46:1220–6.

Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 2010;6:e1000843.

Pressoir G, Berthaud J. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity (Edinb). 2004;92:88–94.

Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:e2655–62.

Nakazato T, Housworth EA. Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. Am J Bot. 2011;98:88–98.

United States. Office of Experimental Stations. Experimental Station Recod, Volumen 39. Volume 39. Washington, DC, USA: United States. Office of Experimental Stations; 1918.

Merk HL, Yames SC, Van Deynze A, Tong N, Menda N, Mueller LA, et al. Trait diversity and potential for selection indeces based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci. 2012;137:427–37.


This item appears in the following Collection(s)

Show full item record