- -

Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Montero Pau, Javier es_ES
dc.contributor.author Sauvage, Christopher es_ES
dc.contributor.author Bauchet, Guillermo es_ES
dc.contributor.author Illa, Eudald es_ES
dc.contributor.author Díez Niclós, Mª José Teresa de Jesús es_ES
dc.contributor.author Francis, David es_ES
dc.contributor.author Causse, Mathilde es_ES
dc.contributor.author Van Der Knaap, Esther Klazina Maria es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.date.accessioned 2016-05-10T10:16:50Z
dc.date.available 2016-05-10T10:16:50Z
dc.date.issued 2015-04-01
dc.identifier.issn 1471-2164
dc.identifier.uri http://hdl.handle.net/10251/63841
dc.description.abstract [EN] Background: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. Results: Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. Conclusions: This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement. es_ES
dc.description.sponsorship We are grateful to the gene banks for their collections that made this study possible. We thank Syngenta Seeds for providing genotyping data for 42 accessions. We would like to thank the Supercomputing and Bioinnovation Center (Universidad de Malaga, Spain) for providing computational resources to process the SNAPP phylogenetic tree. This research was supported in part by the USDA/NIFA funded SolCAP project under contract number to DF and USDA AFRI 2013-67013-21229 to EvdK and DF. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Solanum pimpinellifolium es_ES
dc.subject SolCAP array es_ES
dc.subject Origin es_ES
dc.subject Variability es_ES
dc.subject Genome es_ES
dc.subject Fruit size genes es_ES
dc.subject Domestication es_ES
dc.subject.classification GENETICA es_ES
dc.title Genomic variation in tomato, from wild ancestors to contemporary breeding accessions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-015-1444-1
dc.relation.projectID info:eu-repo/grantAgreement/USDA//USDA AFRI 2013-67013-21229/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Blanca Postigo, JM.; Montero Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; Díez Niclós, MJTDJ.; Francis, D.... (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 16(257):1-19. https://doi.org/10.1186/s12864-015-1444-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s12864-015-1444-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 257 es_ES
dc.relation.senia 289648 es_ES
dc.identifier.pmid 25880392 en_EN
dc.identifier.pmcid PMC4404671 en_EN
dc.contributor.funder U.S. Department of Agriculture es_ES
dc.description.references Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science (80-). 1997;277:1063–6. es_ES
dc.description.references Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21. es_ES
dc.description.references Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 2002;42:1780. es_ES
dc.description.references Weigel D, Nordborg M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol. 2005;138:567–8. es_ES
dc.description.references Peralta IE, Spooner DM, Knapp S, Anderson C. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr. 2008;84:1–186. es_ES
dc.description.references Rick CM, Fobes JF. Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club. 1975;102:376–84. es_ES
dc.description.references Zuriaga E, Blanca J, Nuez F. Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol. 2008;56:663–78. es_ES
dc.description.references Zuriaga E, Blanca J, Cordero L, Sifres A, Blas-Cerdán WG, Morales R, et al. Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol. 2008;56:39–51. es_ES
dc.description.references Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One. 2012;7:e48198. es_ES
dc.description.references Rick CM. Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agrar. 1976;30:249–59. es_ES
dc.description.references Rick CM, Holle M. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot. 1990;44:69–78. es_ES
dc.description.references Nakazato T, Franklin RA, Kirk BC, Housworth EA. Population structure, demographic history, and evolutionary patterns of a green-fruited tomato, Solanum peruvianum (Solanaceae), revealed by spatial genetics analyses. Am J Bot. 2012;99:1207–16. es_ES
dc.description.references Rick CM, Butler L. Cytogenetics of the Tomato. Adv Genet. 1956;8:267–382. Advances in Genetics. es_ES
dc.description.references Jenkins JA. The origin of the cultivated tomato. Econ Bot. 1948;2:379–92. es_ES
dc.description.references Nesbitt TC, Tanksley SD. Comparative sequencing in the genus lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics. 2002;162:365–79. es_ES
dc.description.references Ranc N, Muños S, Santoni S, Causse M. A clarified position for Solanum lycopersicum var cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 2008;8:130. es_ES
dc.description.references De Candolle A. Origin of cultivated plants. 2nd ed. London: Trench, Paul; 1886. es_ES
dc.description.references Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet. 1990;80:437–48. es_ES
dc.description.references Williams CE, Clair DAS. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome. 1993;36:619–30. es_ES
dc.description.references Park YH, West MAL, St Clair DA. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L). Genome. 2004;47:510–8. es_ES
dc.description.references Sim S-C, Robbins MD, Van Deynze A, Michel AP, Francis DM. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity (Edinb). 2011;106:927–35. es_ES
dc.description.references Sim S-C, Robbins MD, Chilcott C, Zhu T, Francis DM. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L) reveals patterns of SNP variation associated with breeding. BMC Genomics. 2009;10:466. es_ES
dc.description.references Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, et al. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One. 2012;7:e40563. es_ES
dc.description.references Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289:85–8. es_ES
dc.description.references Liu J, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A. 2002;99:13302–6. es_ES
dc.description.references Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008;319:1527–30. es_ES
dc.description.references Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet. 2008;40:800–4. es_ES
dc.description.references Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, et al. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 2011;156:2244–54. es_ES
dc.description.references Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A. 2013;110:17125–30. es_ES
dc.description.references Rodríguez GR, Muños S, Anderson C, Sim S-C, Michel A, Causse M, et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 2011;156:275–85. es_ES
dc.description.references Sim S-C, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, et al. High-density SNP genotyping of tomato (Solanum lycopersicum L) reveals patterns of genetic variation due to breeding. PLoS One. 2012;7:e45520. es_ES
dc.description.references Sauvage C, Segura V, Bauchet G, Stevens R, Thi Do P, Nikoloski Z, et al. Genome Wide Association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014;165:1120–32. es_ES
dc.description.references Hamilton JP, Sim S-C, Stoffel K, Van Deynze A, Buell CR, Francis DM. Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome J. 2012;5:17. es_ES
dc.description.references Patterson NJ, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. es_ES
dc.description.references Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9. es_ES
dc.description.references Kosman E, Leonard KJ. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol. 2005;14:415–24. es_ES
dc.description.references Adler D. vioplot: Violin plot. 2005. es_ES
dc.description.references Jost L. Gst and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26. es_ES
dc.description.references Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7. es_ES
dc.description.references Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Ecol Evol. 2006;23:254–67. es_ES
dc.description.references Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, et al. PyCogent: a toolkit for making sense from sequence. Genome Biol. 2007;8:R171. es_ES
dc.description.references Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008;24:2498–504. es_ES
dc.description.references Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. es_ES
dc.description.references Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829. es_ES
dc.description.references R Core Team. R: A Language and Environment for Statistical Computing. 2013. es_ES
dc.description.references Sinnot RS. Virtues of the haversine. Sky Telesc. 1984;68:159. es_ES
dc.description.references Hijmans RJ, Etten JV. raster: Geographic data analysis and Modeling. 2013. es_ES
dc.description.references Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol. 2012;29:1917–32. es_ES
dc.description.references Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. es_ES
dc.description.references Rambaut A. Tracer v.1.5. 2009. es_ES
dc.description.references Huang Z, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet. 2011;123:465–74. es_ES
dc.description.references Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, et al. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 2010;22:1057–73. es_ES
dc.description.references Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989. es_ES
dc.description.references Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46:1220–6. es_ES
dc.description.references Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 2010;6:e1000843. es_ES
dc.description.references Pressoir G, Berthaud J. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity (Edinb). 2004;92:88–94. es_ES
dc.description.references Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:e2655–62. es_ES
dc.description.references Nakazato T, Housworth EA. Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. Am J Bot. 2011;98:88–98. es_ES
dc.description.references United States. Office of Experimental Stations. Experimental Station Recod, Volumen 39. Volume 39. Washington, DC, USA: United States. Office of Experimental Stations; 1918. es_ES
dc.description.references Merk HL, Yames SC, Van Deynze A, Tong N, Menda N, Mueller LA, et al. Trait diversity and potential for selection indeces based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci. 2012;137:427–37. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem