- -

Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation

Mostrar el registro completo del ítem

Pandis, C.; Trujillo Muñoz, S.; Matos, J.; Madeira, S.; Ródenas Rochina, J.; Kripotou, S.; Kyritsis, A.... (2015). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience. 15(2):262-274. https://doi.org/10.1002/mabi.201400339

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63849

Ficheros en el ítem

Metadatos del ítem

Título: Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation
Autor: Pandis, Christos Trujillo Muñoz, Sara Matos, Joana Madeira, Sara Ródenas Rochina, Joaquín Kripotou, Sotiria Kyritsis, Apostolos Mano, Joao F. Gómez Ribelles, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes ...[+]
Palabras clave: organic-inorganic hybrid composites , porosity , proliferation and osteoblastic differentiation of cells , sol-gel processes , thermomechanical properties , Differentiation of cells
Derechos de uso: Cerrado
Fuente:
Macromolecular Bioscience. (issn: 1616-5187 ) (eissn: 1616-5195 )
DOI: 10.1002/mabi.201400339
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/mabi.201400339
Código del Proyecto:
info:eu-repo/grantAgreement/J4FCT/5876-PPCDTI/115048/PT/
info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/
info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F238/
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
Agradecimientos:
The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning'' (Action's Beneficiary: General Secretariat for ...[+]
Tipo: Artículo

References

Södergård, A., & Stolt, M. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), 27-41. doi:10.1002/9780470649848.ch3

Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092

Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6 [+]
Södergård, A., & Stolt, M. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), 27-41. doi:10.1002/9780470649848.ch3

Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092

Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6

Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475-2490. doi:10.1016/s0142-9612(00)00115-0

Jiao, Y.-P., & Cui, F.-Z. (2007). Surface modification of polyester biomaterials for tissue engineering. Biomedical Materials, 2(4), R24-R37. doi:10.1088/1748-6041/2/4/r02

Zhu, Y., Mao, Z., & Gao, C. (2013). Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv., 3(8), 2509-2519. doi:10.1039/c2ra22358a

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002

Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039

Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005

Sinha Ray, S., Yamada, K., Okamoto, M., & Ueda, K. (2002). Polylactide-Layered Silicate Nanocomposite:  A Novel Biodegradable Material. Nano Letters, 2(10), 1093-1096. doi:10.1021/nl0202152

Wu, C.-S., & Liao, H.-T. (2007). Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer, 48(15), 4449-4458. doi:10.1016/j.polymer.2007.06.004

Verrier, S., Blaker, J. J., Maquet, V., Hench, L. L., & Boccaccini, A. R. (2004). PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials, 25(15), 3013-3021. doi:10.1016/j.biomaterials.2003.09.081

Papageorgiou, G. Z., Achilias, D. S., Nanaki, S., Beslikas, T., & Bikiaris, D. (2010). PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochimica Acta, 511(1-2), 129-139. doi:10.1016/j.tca.2010.08.004

Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Rizzarelli, P. (2011). Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. European Polymer Journal, 47(2), 139-152. doi:10.1016/j.eurpolymj.2010.10.027

Demirdögen, B., Plazas Bonilla, C. E., Trujillo, S., Perilla, J. E., Elcin, A. E., Elcin, Y. M., & Gómez Ribelles, J. L. (2013). Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. Journal of Biomedical Materials Research Part A, 102(9), 3229-3236. doi:10.1002/jbm.a.34999

Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073

Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6

Gong, Y., Zhu, Y., Liu, Y., Ma, Z., Gao, C., & Shen, J. (2007). Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomaterialia, 3(5), 677-685. doi:10.1016/j.actbio.2007.04.007

Liu, Fishman, M. L., Hicks, K. B., & Liu, C.-K. (2005). Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid). Journal of Agricultural and Food Chemistry, 53(23), 9017-9022. doi:10.1021/jf058083w

Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031

Ignat’eva, N. Y., Danilov, N. A., Averkiev, S. V., Obrezkova, M. V., Lunin, V. V., & Sobol’, E. N. (2007). Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Journal of Analytical Chemistry, 62(1), 51-57. doi:10.1134/s106193480701011x

Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691

Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267-273. doi:10.1016/s0032-3861(97)00229-2

Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435

Causa, F., Battista, E., Della Moglie, R., Guarnieri, D., Iannone, M., & Netti, P. A. (2010). Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 26(12), 9875-9884. doi:10.1021/la100207q

Yuan, S., Xiong, G., Roguin, A., & Choong, C. (2012). Immobilization of Gelatin onto Poly(Glycidyl Methacrylate)-Grafted Polycaprolactone Substrates for Improved Cell–Material Interactions. Biointerphases, 7(1), 30. doi:10.1007/s13758-012-0030-1

Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001

Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5

Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33-72. doi:10.1021/cr00099a003

Pandis, C., Spanoudaki, A., Kyritsis, A., Pissis, P., Hernández, J. C. R., Gómez Ribelles, J. L., & Monleón Pradas, M. (2011). Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. Journal of Polymer Science Part B: Polymer Physics, 49(9), 657-668. doi:10.1002/polb.22225

Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045

Mano, J. F., Gómez Ribelles, J. L., Alves, N. M., & Salmerón Sanchez, M. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 46(19), 8258-8265. doi:10.1016/j.polymer.2005.06.096

Wang, Y., Gómez Ribelles, J. L., Salmerón Sánchez, M., & Mano, J. F. (2005). Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 38(11), 4712-4718. doi:10.1021/ma047934i

Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025

E. Pérez-Román Bachelor Thesis 2014

Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem