Mostrar el registro sencillo del ítem
dc.contributor.author | Pandis, Christos | es_ES |
dc.contributor.author | Trujillo Muñoz, Sara | es_ES |
dc.contributor.author | Matos, Joana | es_ES |
dc.contributor.author | Madeira, Sara | es_ES |
dc.contributor.author | Ródenas Rochina, Joaquín | es_ES |
dc.contributor.author | Kripotou, Sotiria | es_ES |
dc.contributor.author | Kyritsis, Apostolos | es_ES |
dc.contributor.author | Mano, Joao F. | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2016-05-10T11:28:05Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 1616-5187 | |
dc.identifier.uri | http://hdl.handle.net/10251/63849 | |
dc.description.abstract | A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix. | es_ES |
dc.description.sponsorship | The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning'' (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, Grant No.: NARGEL-PE5(2551). J.R.R. acknowledges funding of his PhD by the Generalitat Valenciana through VALi+d grant (ACIF/2010/238). J.F.M. thanks the Portuguese Foundation for Science and Technology (FCT) for financial support through the PTDC/FIS/115048/2009 project. J.L.G.R. acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through theMAT2013-46467-C4-1-R project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance from the European Regional Development Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Macromolecular Bioscience | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | organic-inorganic hybrid composites | es_ES |
dc.subject | porosity | es_ES |
dc.subject | proliferation and osteoblastic differentiation of cells | es_ES |
dc.subject | sol-gel processes | es_ES |
dc.subject | thermomechanical properties | es_ES |
dc.subject | Differentiation of cells | |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.title | Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/mabi.201400339 | |
dc.relation.projectID | info:eu-repo/grantAgreement/J4FCT/5876-PPCDTI/115048/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F238/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Pandis, C.; Trujillo Muñoz, S.; Matos, J.; Madeira, S.; Ródenas Rochina, J.; Kripotou, S.; Kyritsis, A.... (2015). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience. 15(2):262-274. https://doi.org/10.1002/mabi.201400339 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/mabi.201400339 | es_ES |
dc.description.upvformatpinicio | 262 | es_ES |
dc.description.upvformatpfin | 274 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 300840 | es_ES |
dc.identifier.eissn | 1616-5195 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | General Secretariat for Research and Technology, Grecia | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Södergård, A., & Stolt, M. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), 27-41. doi:10.1002/9780470649848.ch3 | es_ES |
dc.description.references | Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 | es_ES |
dc.description.references | Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6 | es_ES |
dc.description.references | Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475-2490. doi:10.1016/s0142-9612(00)00115-0 | es_ES |
dc.description.references | Jiao, Y.-P., & Cui, F.-Z. (2007). Surface modification of polyester biomaterials for tissue engineering. Biomedical Materials, 2(4), R24-R37. doi:10.1088/1748-6041/2/4/r02 | es_ES |
dc.description.references | Zhu, Y., Mao, Z., & Gao, C. (2013). Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv., 3(8), 2509-2519. doi:10.1039/c2ra22358a | es_ES |
dc.description.references | Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002 | es_ES |
dc.description.references | Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039 | es_ES |
dc.description.references | Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005 | es_ES |
dc.description.references | Sinha Ray, S., Yamada, K., Okamoto, M., & Ueda, K. (2002). Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material. Nano Letters, 2(10), 1093-1096. doi:10.1021/nl0202152 | es_ES |
dc.description.references | Wu, C.-S., & Liao, H.-T. (2007). Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer, 48(15), 4449-4458. doi:10.1016/j.polymer.2007.06.004 | es_ES |
dc.description.references | Verrier, S., Blaker, J. J., Maquet, V., Hench, L. L., & Boccaccini, A. R. (2004). PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials, 25(15), 3013-3021. doi:10.1016/j.biomaterials.2003.09.081 | es_ES |
dc.description.references | Papageorgiou, G. Z., Achilias, D. S., Nanaki, S., Beslikas, T., & Bikiaris, D. (2010). PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochimica Acta, 511(1-2), 129-139. doi:10.1016/j.tca.2010.08.004 | es_ES |
dc.description.references | Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Rizzarelli, P. (2011). Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. European Polymer Journal, 47(2), 139-152. doi:10.1016/j.eurpolymj.2010.10.027 | es_ES |
dc.description.references | Demirdögen, B., Plazas Bonilla, C. E., Trujillo, S., Perilla, J. E., Elcin, A. E., Elcin, Y. M., & Gómez Ribelles, J. L. (2013). Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. Journal of Biomedical Materials Research Part A, 102(9), 3229-3236. doi:10.1002/jbm.a.34999 | es_ES |
dc.description.references | Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073 | es_ES |
dc.description.references | Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 | es_ES |
dc.description.references | Gong, Y., Zhu, Y., Liu, Y., Ma, Z., Gao, C., & Shen, J. (2007). Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomaterialia, 3(5), 677-685. doi:10.1016/j.actbio.2007.04.007 | es_ES |
dc.description.references | Liu, Fishman, M. L., Hicks, K. B., & Liu, C.-K. (2005). Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid). Journal of Agricultural and Food Chemistry, 53(23), 9017-9022. doi:10.1021/jf058083w | es_ES |
dc.description.references | Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031 | es_ES |
dc.description.references | Ignat’eva, N. Y., Danilov, N. A., Averkiev, S. V., Obrezkova, M. V., Lunin, V. V., & Sobol’, E. N. (2007). Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Journal of Analytical Chemistry, 62(1), 51-57. doi:10.1134/s106193480701011x | es_ES |
dc.description.references | Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691 | es_ES |
dc.description.references | Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267-273. doi:10.1016/s0032-3861(97)00229-2 | es_ES |
dc.description.references | Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435 | es_ES |
dc.description.references | Causa, F., Battista, E., Della Moglie, R., Guarnieri, D., Iannone, M., & Netti, P. A. (2010). Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 26(12), 9875-9884. doi:10.1021/la100207q | es_ES |
dc.description.references | Yuan, S., Xiong, G., Roguin, A., & Choong, C. (2012). Immobilization of Gelatin onto Poly(Glycidyl Methacrylate)-Grafted Polycaprolactone Substrates for Improved Cell–Material Interactions. Biointerphases, 7(1), 30. doi:10.1007/s13758-012-0030-1 | es_ES |
dc.description.references | Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001 | es_ES |
dc.description.references | Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 | es_ES |
dc.description.references | Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33-72. doi:10.1021/cr00099a003 | es_ES |
dc.description.references | Pandis, C., Spanoudaki, A., Kyritsis, A., Pissis, P., Hernández, J. C. R., Gómez Ribelles, J. L., & Monleón Pradas, M. (2011). Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. Journal of Polymer Science Part B: Polymer Physics, 49(9), 657-668. doi:10.1002/polb.22225 | es_ES |
dc.description.references | Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045 | es_ES |
dc.description.references | Mano, J. F., Gómez Ribelles, J. L., Alves, N. M., & Salmerón Sanchez, M. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 46(19), 8258-8265. doi:10.1016/j.polymer.2005.06.096 | es_ES |
dc.description.references | Wang, Y., Gómez Ribelles, J. L., Salmerón Sánchez, M., & Mano, J. F. (2005). Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 38(11), 4712-4718. doi:10.1021/ma047934i | es_ES |
dc.description.references | Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 | es_ES |
dc.description.references | E. Pérez-Román Bachelor Thesis 2014 | es_ES |
dc.description.references | Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056 | es_ES |