Mostrar el registro sencillo del ítem
dc.contributor.author | Ponzoni, Ignacio | es_ES |
dc.contributor.author | Nueda, Maria José | es_ES |
dc.contributor.author | Tarazona Campos, Sonia | es_ES |
dc.contributor.author | GOTZ, STEFAN | es_ES |
dc.contributor.author | Montaner, David | es_ES |
dc.contributor.author | Dussaut, Julieta Sol | es_ES |
dc.contributor.author | Dopazo, Joaquín | es_ES |
dc.contributor.author | Conesa, Ana | es_ES |
dc.date.accessioned | 2016-05-10T11:30:47Z | |
dc.date.available | 2016-05-10T11:30:47Z | |
dc.date.issued | 2014-03-13 | |
dc.identifier.issn | 1752-0509 | |
dc.identifier.uri | http://hdl.handle.net/10251/63850 | |
dc.description | This article has been published as part of BMC Systems Biology Volume 8 Supplement 2, 2014: Selected articles from the High-Throughput Omics and Data Integration Workshop. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsystbiol/supplements/8/S2. | es_ES |
dc.description.abstract | [EN] Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network’s topology obtained for the yeast cell cycle data. | es_ES |
dc.description.sponsorship | This work has been supported by the FP7 STATegra project, grant 306000, by CONICET (National Research Council of Argentina), grant PIP112-2009-0100322, and by Universidad Nacional del Sur (Bahía Blanca, Argentina), grant PGI 24/N032. The publication costs for this article were funded by the FP7 STATegra project, grant 306000. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Systems Biology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Alzheimers-Disease | es_ES |
dc.subject | Saccharomyces-Cervisiae | es_ES |
dc.subject | S-phase | es_ES |
dc.subject | Microarray experiments | es_ES |
dc.subject | Ubiquitin conjugation | es_ES |
dc.subject | Functional assessment | es_ES |
dc.subject | Sister chromatids | es_ES |
dc.subject | DNA-replication | es_ES |
dc.subject | Genomic data | es_ES |
dc.subject | R package | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | DIBUJO | es_ES |
dc.title | Pathway network inference from gene expression data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1752-0509-8-S2-S7 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 11220090100322/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/306000/EU/User-driven Development of Statistical Methods for Experimental Planning, Data Gathering, and Integrative Analysis of Next Generation Sequencing, Proteomics and Metabolomics data/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNS//PGI 24%2FN032/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Ponzoni, I.; Nueda, MJ.; Tarazona Campos, S.; Gotz, S.; Montaner, D.; Dussaut, JS.; Dopazo, J.... (2014). Pathway network inference from gene expression data. BMC Systems Biology. 8(2):1-17. https://doi.org/10.1186/1752-0509-8-S2-S7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1752-0509-8-S2-S7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 269165 | es_ES |
dc.identifier.pmid | 25032889 | en_EN |
dc.identifier.pmcid | PMC4101702 | en_EN |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | |
dc.contributor.funder | Universidad Nacional del Sur, Argentina |