- -

New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lozano Picazo, Paloma es_ES
dc.contributor.author Perez Garnes, Manuel es_ES
dc.contributor.author Martínez Ramos, C. es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Monleón Pradas, Manuel
dc.date.accessioned 2016-05-10T11:35:17Z
dc.date.issued 2015-02
dc.identifier.issn 1616-5187
dc.identifier.uri http://hdl.handle.net/10251/63853
dc.description.abstract [EN] Semi-degradable materials may have many applications. Here poly(ethyl acrylate) and poly(ϵ-caprolactone) were combined as semi-interpenetrated networks, and thoroughly characterized in terms of final composition, interactions between components, wettability, and mechanical properties. PCL modulates the mechanical properties of the PEA elastomeric network. Cultures of fibroblasts and adipose-tissue derived stem cells showed excellent biological performance of the materials. The results are relevant for applications seeking materials leaving a permanent supporting skeleton after the partial degradation, as in patches for cardiac regeneration or in abdominal wall meshes. es_ES
dc.description.sponsorship The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. Dr. J. C. Chachques (Hopital Europeen Georges Pompidou, Paris, France) and Drs. A. Bayes-Genis and C. Soler-Botija (Hospital Germans Trias i Pujol, Badalona, Spain) are thanked for kindly providing and expanding the ASCs employed in this study. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Macromolecular Bioscience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biocompatibility es_ES
dc.subject Poly(caprolactone) es_ES
dc.subject Poly(ethyl acrylate) es_ES
dc.subject Semi-degradable es_ES
dc.subject Semi-interpenetrating network es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate) es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/mabi.201400331
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/229239/EU/Regeneration of Cardiac Tissue Assisted by Bioactive Implants/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Lozano Picazo, P.; Perez Garnes, M.; Martínez Ramos, C.; Vallés Lluch, A.; Monleón Pradas, M. (2015). New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience. 15(2):229-240. https://doi.org/10.1002/mabi.201400331 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/mabi.201400331 es_ES
dc.description.upvformatpinicio 229 es_ES
dc.description.upvformatpfin 240 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 276462 es_ES
dc.identifier.eissn 1616-5195
dc.identifier.pmid 25266822
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: a review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327-342. doi:10.1002/term.46 es_ES
dc.description.references Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H. M., … Levenberg, S. (2007). Tissue Engineering of Vascularized Cardiac Muscle From Human Embryonic Stem Cells. Circulation Research, 100(2), 263-272. doi:10.1161/01.res.0000257776.05673.ff es_ES
dc.description.references Steinhauser, M. L., & Lee, R. T. (2011). Regeneration of the heart. EMBO Molecular Medicine, 3(12), 701-712. doi:10.1002/emmm.201100175 es_ES
dc.description.references Atzet, S., Curtin, S., Trinh, P., Bryant, S., & Ratner, B. (2008). Degradable Poly(2-hydroxyethyl methacrylate)-co-polycaprolactone Hydrogels for Tissue Engineering Scaffolds. Biomacromolecules, 9(12), 3370-3377. doi:10.1021/bm800686h es_ES
dc.description.references Venugopal, J. R., Prabhakaran, M. P., Mukherjee, S., Ravichandran, R., Dan, K., & Ramakrishna, S. (2011). Biomaterial strategies for alleviation of myocardial infarction. Journal of The Royal Society Interface, 9(66), 1-19. doi:10.1098/rsif.2011.0301 es_ES
dc.description.references Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017 es_ES
dc.description.references Shoichet, M. S. (2010). Polymer Scaffolds for Biomaterials Applications. Macromolecules, 43(2), 581-591. doi:10.1021/ma901530r es_ES
dc.description.references Charlton, D. C., Peterson, M. G. E., Spiller, K., Lowman, A., Torzilli, P. A., & Maher, S. A. (2008). Semi-Degradable Scaffold for Articular Cartilage Replacement. Tissue Engineering Part A, 14(1), 207-213. doi:10.1089/ten.a.2006.0344 es_ES
dc.description.references Spiller, K. L., Holloway, J. L., Gribb, M. E., & Lowman, A. M. (2010). Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(8), 636-647. doi:10.1002/term.356 es_ES
dc.description.references Scholten, P. M., Ng, K. W., Joh, K., Serino, L. P., Warren, R. F., Torzilli, P. A., & Maher, S. A. (2011). A semi-degradable composite scaffold for articular cartilage defects. Journal of Biomedical Materials Research Part A, 97A(1), 8-15. doi:10.1002/jbm.a.33005 es_ES
dc.description.references Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030 es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Soria, J. M., Sancho-Tello, M., Esparza, M. A. G., Mirabet, V., Bagan, J. V., Monleón, M., & Carda, C. (2011). Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation. Journal of Biomedical Materials Research Part A, 97A(1), 85-92. doi:10.1002/jbm.a.33032 es_ES
dc.description.references Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012 es_ES
dc.description.references Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146 es_ES
dc.description.references Veiga, D. D., Antunes, J. C., Gómez, R. G., Mano, J. F., Ribelles, J. L. G., & Soria, J. M. (2010). Three-Dimensional Scaffolds as a Model System for Neural and Endothelial ‘In Vitro’ Culture. Journal of Biomaterials Applications, 26(3), 293-310. doi:10.1177/0885328210365005 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297 es_ES
dc.description.references Martínez-Ramos, C., Vallés-Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273 es_ES
dc.description.references Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 es_ES
dc.description.references Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15-33. doi:10.1016/j.jconrel.2011.09.064 es_ES
dc.description.references Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259 es_ES
dc.description.references Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. doi:10.1016/s0142-9612(00)00101-0 es_ES
dc.description.references Sperling, L. H. (1981). Interpenetrating Polymer Networks and Related Materials. doi:10.1007/978-1-4684-3830-7 es_ES
dc.description.references Más Estellés, J., Vidaurre, A., Meseguer Dueñas, J. M., & Castilla Cortázar, I. (2007). Physical characterization of polycaprolactone scaffolds. Journal of Materials Science: Materials in Medicine, 19(1), 189-195. doi:10.1007/s10856-006-0101-2 es_ES
dc.description.references Shafy, A., Fink, T., Zachar, V., Lila, N., Carpentier, A., & Chachques, J. C. (2012). Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. European Journal of Cardio-Thoracic Surgery, 43(6), 1211-1219. doi:10.1093/ejcts/ezs480 es_ES
dc.description.references Sarac, A. S. (1999). Redox polymerization. Progress in Polymer Science, 24(8), 1149-1204. doi:10.1016/s0079-6700(99)00026-x es_ES
dc.description.references Yagci, C., & Yildiz, U. (2005). Redox polymerization of methyl methacrylate with allyl alcohol 1,2-butoxylate-block-ethoxylate initiated by Ce(IV)/HNO3 redox system. European Polymer Journal, 41(1), 177-184. doi:10.1016/j.eurpolymj.2004.08.008 es_ES
dc.description.references Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7 es_ES
dc.description.references García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 es_ES
dc.description.references Dado, D., & Levenberg, S. (2009). Cell–scaffold mechanical interplay within engineered tissue. Seminars in Cell & Developmental Biology, 20(6), 656-664. doi:10.1016/j.semcdb.2009.02.001 es_ES
dc.description.references Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem