- -

New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate)

Mostrar el registro completo del ítem

Lozano Picazo, P.; Perez Garnes, M.; Martínez Ramos, C.; Vallés Lluch, A.; Monleón Pradas, M. (2015). New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience. 15(2):229-240. https://doi.org/10.1002/mabi.201400331

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63853

Ficheros en el ítem

Metadatos del ítem

Título: New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(epsilon-caprolactone) and Poly(ethyl acrylate)
Autor: Lozano Picazo, Paloma Perez Garnes, Manuel Martínez Ramos, C. Vallés Lluch, Ana Monleón Pradas, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] Semi-degradable materials may have many applications. Here poly(ethyl acrylate) and poly(ϵ-caprolactone) were combined as semi-interpenetrated networks, and thoroughly characterized in terms of final composition, ...[+]
Palabras clave: Biocompatibility , Poly(caprolactone) , Poly(ethyl acrylate) , Semi-degradable , Semi-interpenetrating network
Derechos de uso: Cerrado
Fuente:
Macromolecular Bioscience. (issn: 1616-5187 ) (eissn: 1616-5195 )
DOI: 10.1002/mabi.201400331
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/mabi.201400331
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/229239/EU/Regeneration of Cardiac Tissue Assisted by Bioactive Implants/
info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/
Agradecimientos:
The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. Dr. J. C. ...[+]
Tipo: Artículo

References

Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: a review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327-342. doi:10.1002/term.46

Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H. M., … Levenberg, S. (2007). Tissue Engineering of Vascularized Cardiac Muscle From Human Embryonic Stem Cells. Circulation Research, 100(2), 263-272. doi:10.1161/01.res.0000257776.05673.ff

Steinhauser, M. L., & Lee, R. T. (2011). Regeneration of the heart. EMBO Molecular Medicine, 3(12), 701-712. doi:10.1002/emmm.201100175 [+]
Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: a review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327-342. doi:10.1002/term.46

Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H. M., … Levenberg, S. (2007). Tissue Engineering of Vascularized Cardiac Muscle From Human Embryonic Stem Cells. Circulation Research, 100(2), 263-272. doi:10.1161/01.res.0000257776.05673.ff

Steinhauser, M. L., & Lee, R. T. (2011). Regeneration of the heart. EMBO Molecular Medicine, 3(12), 701-712. doi:10.1002/emmm.201100175

Atzet, S., Curtin, S., Trinh, P., Bryant, S., & Ratner, B. (2008). Degradable Poly(2-hydroxyethyl methacrylate)-co-polycaprolactone Hydrogels for Tissue Engineering Scaffolds. Biomacromolecules, 9(12), 3370-3377. doi:10.1021/bm800686h

Venugopal, J. R., Prabhakaran, M. P., Mukherjee, S., Ravichandran, R., Dan, K., & Ramakrishna, S. (2011). Biomaterial strategies for alleviation of myocardial infarction. Journal of The Royal Society Interface, 9(66), 1-19. doi:10.1098/rsif.2011.0301

Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017

Shoichet, M. S. (2010). Polymer Scaffolds for Biomaterials Applications. Macromolecules, 43(2), 581-591. doi:10.1021/ma901530r

Charlton, D. C., Peterson, M. G. E., Spiller, K., Lowman, A., Torzilli, P. A., & Maher, S. A. (2008). Semi-Degradable Scaffold for Articular Cartilage Replacement. Tissue Engineering Part A, 14(1), 207-213. doi:10.1089/ten.a.2006.0344

Spiller, K. L., Holloway, J. L., Gribb, M. E., & Lowman, A. M. (2010). Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(8), 636-647. doi:10.1002/term.356

Scholten, P. M., Ng, K. W., Joh, K., Serino, L. P., Warren, R. F., Torzilli, P. A., & Maher, S. A. (2011). A semi-degradable composite scaffold for articular cartilage defects. Journal of Biomedical Materials Research Part A, 97A(1), 8-15. doi:10.1002/jbm.a.33005

Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Soria, J. M., Sancho-Tello, M., Esparza, M. A. G., Mirabet, V., Bagan, J. V., Monleón, M., & Carda, C. (2011). Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation. Journal of Biomedical Materials Research Part A, 97A(1), 85-92. doi:10.1002/jbm.a.33032

Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012

Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146

Veiga, D. D., Antunes, J. C., Gómez, R. G., Mano, J. F., Ribelles, J. L. G., & Soria, J. M. (2010). Three-Dimensional Scaffolds as a Model System for Neural and Endothelial ‘In Vitro’ Culture. Journal of Biomaterials Applications, 26(3), 293-310. doi:10.1177/0885328210365005

Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803

Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297

Martínez-Ramos, C., Vallés-Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002

Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15-33. doi:10.1016/j.jconrel.2011.09.064

Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259

Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. doi:10.1016/s0142-9612(00)00101-0

Sperling, L. H. (1981). Interpenetrating Polymer Networks and Related Materials. doi:10.1007/978-1-4684-3830-7

Más Estellés, J., Vidaurre, A., Meseguer Dueñas, J. M., & Castilla Cortázar, I. (2007). Physical characterization of polycaprolactone scaffolds. Journal of Materials Science: Materials in Medicine, 19(1), 189-195. doi:10.1007/s10856-006-0101-2

Shafy, A., Fink, T., Zachar, V., Lila, N., Carpentier, A., & Chachques, J. C. (2012). Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. European Journal of Cardio-Thoracic Surgery, 43(6), 1211-1219. doi:10.1093/ejcts/ezs480

Sarac, A. S. (1999). Redox polymerization. Progress in Polymer Science, 24(8), 1149-1204. doi:10.1016/s0079-6700(99)00026-x

Yagci, C., & Yildiz, U. (2005). Redox polymerization of methyl methacrylate with allyl alcohol 1,2-butoxylate-block-ethoxylate initiated by Ce(IV)/HNO3 redox system. European Polymer Journal, 41(1), 177-184. doi:10.1016/j.eurpolymj.2004.08.008

Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7

García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071

Dado, D., & Levenberg, S. (2009). Cell–scaffold mechanical interplay within engineered tissue. Seminars in Cell & Developmental Biology, 20(6), 656-664. doi:10.1016/j.semcdb.2009.02.001

Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem