Báguena Albaladejo, M.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2015). An Adaptive Anycasting Solution for Crowd Sensing in Vehicular Environments. IEEE Transactions on Industrial Electronics. 62(12):7911-7919. https://doi.org/10.1109/TIE.2015.2447505
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63865
Título:
|
An Adaptive Anycasting Solution for Crowd Sensing in Vehicular Environments
|
Autor:
|
Báguena Albaladejo, Miguel
Tavares de Araujo Cesariny Calafate, Carlos Miguel
Cano Escribá, Juan Carlos
Manzoni, Pietro
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Fecha difusión:
|
|
Resumen:
|
Vehicular networks can be seen as the new
key enablers of the future networked society. Vehicles traveling
can act as mobile sensors and collect a variety of
information that can be used to enable various new services
such ...[+]
Vehicular networks can be seen as the new
key enablers of the future networked society. Vehicles traveling
can act as mobile sensors and collect a variety of
information that can be used to enable various new services
such as environment monitoring, traffic management,
urban surveillance, and so on. In this paper, we present
“adaptive Anycasting solution for Vehicular Environments”
(AVE), which is a message delivery protocol that combines
geographical and topological information to dynamically
adapt its behavior to network conditions. We focus on
vehicle-to-infrastructure connectivity for cloud services,
where the vehicles send the sensed information as individual
and independent messages to a cloud service in
the Internet. This scenario requires access to any available
close-by roadside unit, thus making anycasting the ideal
delivery mechanism. Simulations results show that the
hybrid and adaptive approach of AVE is able to improve
network performance. For example, regarding delivery ratio,
AVE outperforms DYMO by 10% in sparse scenarios and
outperforms delay-tolerant networking techniques by 10%
in dense scenarios.
[-]
|
Palabras clave:
|
Adaptive
,
Anycasting
,
Crowd sensing
,
Vehicular networks
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
IEEE Transactions on Industrial Electronics. (issn:
0278-0046
)
|
DOI:
|
10.1109/TIE.2015.2447505
|
Editorial:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Versión del editor:
|
http://dx.doi.org/ 10.1109/TIE.2015.2447505
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/
info:eu-repo/grantAgreement/ME//AP2010-4397/ES/AP2010-4397/
|
Descripción:
|
“©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
|
Agradecimientos:
|
This work was supported in part by the Ministerio de Economa y Competitividad, Programa Estatal de Investigacin, Desarrollo e Innovacin Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant ...[+]
This work was supported in part by the Ministerio de Economa y Competitividad, Programa Estatal de Investigacin, Desarrollo e Innovacin Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R and in part by the Ministerio de Educacion, Spain, under the FPU program, AP2010-4397.
[-]
|
Tipo:
|
Artículo
|