- -

Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sen, L es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.contributor.author Su, YJ es_ES
dc.contributor.author Wang, T es_ES
dc.date.accessioned 2016-05-12T07:22:44Z
dc.date.available 2016-05-12T07:22:44Z
dc.date.issued 2012-08-16
dc.identifier.issn 1471-2148
dc.identifier.uri http://hdl.handle.net/10251/63945
dc.description.abstract Background: The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. Results: We sequenced psbA, which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. Conclusions: The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA, in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others. es_ES
dc.description.sponsorship We thank Dr. Yefu Wang at State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China, for the guidance for wording, and we also thank Bo Wang and Dr. Lei Gao at the Wuhan Botanical Garden, Chinese Academy of Sciences, China, for the experimental assistance. We thank Dr. Jianqiang Li at the Wuhan Botanical Garden, Chinese Academy of Sciences, China, for the advices on species sampling. We appreciate two anonymous reviewers and other editors for their helpful suggestions. The present work was financially supported by the National Nature Science Foundation of China (No. 30970290, 31070594), and by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-J-20, KSCX2-YW-Z-0940). Dr. Mario A. Fares was supported by Spanish Ministerio de Ciencia e Inovacion (No. BFU2009-12022) and Research Frontiers Program (No. 10/RFP/GEN2685) from Science Foundation Ireland. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2148-12-145
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31070594/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10/RFP/GEN2685/IE/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/CAS//KSCX2-YW-Z-0940/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAS//KSCX2-EW-J-20/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//30970290/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sen, L.; Fares Riaño, MA.; Su, Y.; Wang, T. (2012). Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary. BMC Evolutionary Biology. 12(145):1-13. https://doi.org/10.1186/1471-2148-12-145 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2148-12-145 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 145 es_ES
dc.relation.senia 233019 es_ES
dc.identifier.pmid 22899792 en_EN
dc.identifier.pmcid PMC3499216 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Chinese Academy of Sciences es_ES
dc.description.references Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of Photosynthesis. Annual Review of Plant Biology, 62(1), 515-548. doi:10.1146/annurev-arplant-042110-103811 es_ES
dc.description.references Minai, L., Wostrikoff, K., Wollman, F.-A., & Choquet, Y. (2005). Chloroplast Biogenesis of Photosystem II Cores Involves a Series of Assembly-Controlled Steps That Regulate Translation. The Plant Cell, 18(1), 159-175. doi:10.1105/tpc.105.037705 es_ES
dc.description.references Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., & Saenger, W. (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology, 16(3), 334-342. doi:10.1038/nsmb.1559 es_ES
dc.description.references Stein, D. B., Conant, D. S., Ahearn, M. E., Jordan, E. T., Kirch, S. A., Hasebe, M., … Thomson, J. A. (1992). Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proceedings of the National Academy of Sciences, 89(5), 1856-1860. doi:10.1073/pnas.89.5.1856 es_ES
dc.description.references Gao, L., Yi, X., Yang, Y.-X., Su, Y.-J., & Wang, T. (2009). Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evolutionary Biology, 9(1), 130. doi:10.1186/1471-2148-9-130 es_ES
dc.description.references Wolf, P. G. (2003). Complete Nucleotide Sequence of the Chloroplast Genome from a Leptosporangiate Fern, Adiantum capillus-veneris L. DNA Research, 10(2), 59-65. doi:10.1093/dnares/10.2.59 es_ES
dc.description.references Wolf, P. G., Roper, J. M., & Duffy, A. M. (2010). The evolution of chloroplast genome structure in ferns. Genome, 53(9), 731-738. doi:10.1139/g10-061 es_ES
dc.description.references Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 es_ES
dc.description.references Tautz, D., & Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nature Reviews Genetics, 12(10), 692-702. doi:10.1038/nrg3053 es_ES
dc.description.references Gravemann, S., Schnipper, N., Meyer, H., Vaya, A., Nowaczyk, M. J. M., Rajab, A., … Hoffmann, K. (2010). Dosage effect of zero to three functional LBR-genes in vivo and in vitro. Nucleus, 1(2), 179-189. doi:10.4161/nucl.1.2.11113 es_ES
dc.description.references Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., … Basu, M. K. (2011). The Ecoresponsive Genome of Daphnia pulex. Science, 331(6017), 555-561. doi:10.1126/science.1197761 es_ES
dc.description.references Crisp, M. D., & Cook, L. G. (2011). Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192(4), 997-1009. doi:10.1111/j.1469-8137.2011.03862.x es_ES
dc.description.references Schuettpelz, E., & Pryer, K. M. (2009). Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences, 106(27), 11200-11205. doi:10.1073/pnas.0811136106 es_ES
dc.description.references Wang, G.-Z., & Lercher, M. J. (2011). The Effects of Network Neighbours on Protein Evolution. PLoS ONE, 6(4), e18288. doi:10.1371/journal.pone.0018288 es_ES
dc.description.references Liang, Z., Xu, M., Teng, M., Niu, L., & Wu, J. (2010). Coevolution is a short-distance force at the protein interaction level and correlates with the modular organization of protein networks. FEBS Letters, 584(19), 4237-4240. doi:10.1016/j.febslet.2010.09.014 es_ES
dc.description.references Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144 es_ES
dc.description.references Poon, A., & Chao, L. (2005). The Rate of Compensatory Mutation in the DNA Bacteriophage φX174. Genetics, 170(3), 989-999. doi:10.1534/genetics.104.039438 es_ES
dc.description.references Mateo, R., & Mateu, M. G. (2006). Deterministic, Compensatory Mutational Events in the Capsid of Foot-and-Mouth Disease Virus in Response to the Introduction of Mutations Found in Viruses from Persistent Infections. Journal of Virology, 81(4), 1879-1887. doi:10.1128/jvi.01899-06 es_ES
dc.description.references Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846 es_ES
dc.description.references Sen, L., Fares, M. A., Liang, B., Gao, L., Wang, B., Wang, T., & Su, Y.-J. (2011). Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns. Biology Direct, 6(1), 29. doi:10.1186/1745-6150-6-29 es_ES
dc.description.references Lehtonen, S. (2011). Towards Resolving the Complete Fern Tree of Life. PLoS ONE, 6(10), e24851. doi:10.1371/journal.pone.0024851 es_ES
dc.description.references Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214 es_ES
dc.description.references Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA Barcoding Methods for Land Plants. Methods in Molecular Biology™, 223-252. doi:10.1007/978-1-61779-591-6_11 es_ES
dc.description.references Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., & Savolainen, V. (2005). Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1889-1895. doi:10.1098/rstb.2005.1720 es_ES
dc.description.references Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 es_ES
dc.description.references Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., & Pupko, T. (2007). Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Research, 35(Web Server), W506-W511. doi:10.1093/nar/gkm382 es_ES
dc.description.references Delport, W., Poon, A. F. Y., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. doi:10.1093/bioinformatics/btq429 es_ES
dc.description.references Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320 es_ES
dc.description.references Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493 es_ES
dc.description.references Gouveia-Oliveira, R., Roque, F. S., Wernersson, R., Sicheritz-Ponten, T., Sackett, P. W., Molgaard, A., & Pedersen, A. G. (2009). InterMap3D: predicting and visualizing co-evolving protein residues. Bioinformatics, 25(15), 1963-1965. doi:10.1093/bioinformatics/btp335 es_ES
dc.description.references Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., … Barrett, S. C. H. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE, 3(7), e2802. doi:10.1371/journal.pone.0002802 es_ES
dc.description.references Kress, W. J., & Erickson, D. L. (2007). A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi:10.1371/journal.pone.0000508 es_ES
dc.description.references Karol, K. G., Arumuganathan, K., Boore, J. L., Duffy, A. M., Everett, K. D., Hall, J. D., … Wolf, P. G. (2010). Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evolutionary Biology, 10(1), 321. doi:10.1186/1471-2148-10-321 es_ES
dc.description.references Brown, C. J., Todd, K. M., & Rosenzweig, R. F. (1998). Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution, 15(8), 931-942. doi:10.1093/oxfordjournals.molbev.a026009 es_ES
dc.description.references Bekaert, M., & Conant, G. C. (2010). Copy Number Alterations among Mammalian Enzymes Cluster in the Metabolic Network. Molecular Biology and Evolution, 28(2), 1111-1121. doi:10.1093/molbev/msq296 es_ES
dc.description.references Müh, F., Renger, T., & Zouni, A. (2008). Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: A closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiology and Biochemistry, 46(3), 238-264. doi:10.1016/j.plaphy.2008.01.003 es_ES
dc.description.references Guskov, A., Gabdulkhakov, A., Broser, M., Glöckner, C., Hellmich, J., Kern, J., … Zouni, A. (2010). Recent Progress in the Crystallographic Studies of Photosystem II. ChemPhysChem, 11(6), 1160-1171. doi:10.1002/cphc.200900901 es_ES
dc.description.references Lee, B.-C., Park, K., & Kim, D. (2008). Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins: Structure, Function, and Bioinformatics, 72(3), 863-872. doi:10.1002/prot.21972 es_ES
dc.description.references Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17), 3252-3255. doi:10.1093/bioinformatics/bth352 es_ES
dc.description.references Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253-1256. doi:10.1093/molbev/msn083 es_ES
dc.description.references Phipps, C. J., Taylor, T. N., Taylor, E. L., Cúneo, N. R., Boucher, L. D., & Yao, X. (1998). OSMUNDA (OSMUNDACEAE) FROM THE TRIASSIC OF Antarctica: an example of evolutionary stasis. American Journal of Botany, 85(6), 888-895. doi:10.2307/2446424 es_ES
dc.description.references Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945 es_ES
dc.description.references Suzuki, Y., & Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 16(10), 1315-1328. doi:10.1093/oxfordjournals.molbev.a026042 es_ES
dc.description.references Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208-1222. doi:10.1093/molbev/msi105 es_ES
dc.description.references Caporaso, J. G., Smit, S., Easton, B. C., Hunter, L., Huttley, G. A., & Knight, R. (2008). Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics. BMC Evolutionary Biology, 8(1), 327. doi:10.1186/1471-2148-8-327 es_ES
dc.description.references Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 36(1), 96-99. doi:10.1007/bf02407308 es_ES
dc.description.references Poon, A. F. Y., Lewis, F. I., Frost, S. D. W., & Kosakovsky Pond, S. L. (2008). Spidermonkey: rapid detection of co-evolving sites using Bayesian graphical models. Bioinformatics, 24(17), 1949-1950. doi:10.1093/bioinformatics/btn313 es_ES
dc.description.references Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072 es_ES
dc.description.references Gouveia-Oliveira, R., & Pedersen, A. G. (2007). Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation. Algorithms for Molecular Biology, 2(1). doi:10.1186/1748-7188-2-12 es_ES
dc.description.references Martin, L. C., Gloor, G. B., Dunn, S. D., & Wahl, L. M. (2005). Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21(22), 4116-4124. doi:10.1093/bioinformatics/bti671 es_ES
dc.description.references Makarova, K. S., Wolf, Y. I., van der Oost, J., & Koonin, E. V. (2009). Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct, 4(1), 29. doi:10.1186/1745-6150-4-29 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem