Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of Photosynthesis. Annual Review of Plant Biology, 62(1), 515-548. doi:10.1146/annurev-arplant-042110-103811
Minai, L., Wostrikoff, K., Wollman, F.-A., & Choquet, Y. (2005). Chloroplast Biogenesis of Photosystem II Cores Involves a Series of Assembly-Controlled Steps That Regulate Translation. The Plant Cell, 18(1), 159-175. doi:10.1105/tpc.105.037705
Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., & Saenger, W. (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology, 16(3), 334-342. doi:10.1038/nsmb.1559
[+]
Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of Photosynthesis. Annual Review of Plant Biology, 62(1), 515-548. doi:10.1146/annurev-arplant-042110-103811
Minai, L., Wostrikoff, K., Wollman, F.-A., & Choquet, Y. (2005). Chloroplast Biogenesis of Photosystem II Cores Involves a Series of Assembly-Controlled Steps That Regulate Translation. The Plant Cell, 18(1), 159-175. doi:10.1105/tpc.105.037705
Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., & Saenger, W. (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology, 16(3), 334-342. doi:10.1038/nsmb.1559
Stein, D. B., Conant, D. S., Ahearn, M. E., Jordan, E. T., Kirch, S. A., Hasebe, M., … Thomson, J. A. (1992). Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proceedings of the National Academy of Sciences, 89(5), 1856-1860. doi:10.1073/pnas.89.5.1856
Gao, L., Yi, X., Yang, Y.-X., Su, Y.-J., & Wang, T. (2009). Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evolutionary Biology, 9(1), 130. doi:10.1186/1471-2148-9-130
Wolf, P. G. (2003). Complete Nucleotide Sequence of the Chloroplast Genome from a Leptosporangiate Fern, Adiantum capillus-veneris L. DNA Research, 10(2), 59-65. doi:10.1093/dnares/10.2.59
Wolf, P. G., Roper, J. M., & Duffy, A. M. (2010). The evolution of chloroplast genome structure in ferns. Genome, 53(9), 731-738. doi:10.1139/g10-061
Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151
Tautz, D., & Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nature Reviews Genetics, 12(10), 692-702. doi:10.1038/nrg3053
Gravemann, S., Schnipper, N., Meyer, H., Vaya, A., Nowaczyk, M. J. M., Rajab, A., … Hoffmann, K. (2010). Dosage effect of zero to three functional LBR-genes in vivo and in vitro. Nucleus, 1(2), 179-189. doi:10.4161/nucl.1.2.11113
Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., … Basu, M. K. (2011). The Ecoresponsive Genome of Daphnia pulex. Science, 331(6017), 555-561. doi:10.1126/science.1197761
Crisp, M. D., & Cook, L. G. (2011). Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192(4), 997-1009. doi:10.1111/j.1469-8137.2011.03862.x
Schuettpelz, E., & Pryer, K. M. (2009). Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences, 106(27), 11200-11205. doi:10.1073/pnas.0811136106
Wang, G.-Z., & Lercher, M. J. (2011). The Effects of Network Neighbours on Protein Evolution. PLoS ONE, 6(4), e18288. doi:10.1371/journal.pone.0018288
Liang, Z., Xu, M., Teng, M., Niu, L., & Wu, J. (2010). Coevolution is a short-distance force at the protein interaction level and correlates with the modular organization of protein networks. FEBS Letters, 584(19), 4237-4240. doi:10.1016/j.febslet.2010.09.014
Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144
Poon, A., & Chao, L. (2005). The Rate of Compensatory Mutation in the DNA Bacteriophage φX174. Genetics, 170(3), 989-999. doi:10.1534/genetics.104.039438
Mateo, R., & Mateu, M. G. (2006). Deterministic, Compensatory Mutational Events in the Capsid of Foot-and-Mouth Disease Virus in Response to the Introduction of Mutations Found in Viruses from Persistent Infections. Journal of Virology, 81(4), 1879-1887. doi:10.1128/jvi.01899-06
Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846
Sen, L., Fares, M. A., Liang, B., Gao, L., Wang, B., Wang, T., & Su, Y.-J. (2011). Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns. Biology Direct, 6(1), 29. doi:10.1186/1745-6150-6-29
Lehtonen, S. (2011). Towards Resolving the Complete Fern Tree of Life. PLoS ONE, 6(10), e24851. doi:10.1371/journal.pone.0024851
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214
Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA Barcoding Methods for Land Plants. Methods in Molecular Biology™, 223-252. doi:10.1007/978-1-61779-591-6_11
Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., & Savolainen, V. (2005). Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1889-1895. doi:10.1098/rstb.2005.1720
Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088
Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., & Pupko, T. (2007). Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Research, 35(Web Server), W506-W511. doi:10.1093/nar/gkm382
Delport, W., Poon, A. F. Y., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. doi:10.1093/bioinformatics/btq429
Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320
Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493
Gouveia-Oliveira, R., Roque, F. S., Wernersson, R., Sicheritz-Ponten, T., Sackett, P. W., Molgaard, A., & Pedersen, A. G. (2009). InterMap3D: predicting and visualizing co-evolving protein residues. Bioinformatics, 25(15), 1963-1965. doi:10.1093/bioinformatics/btp335
Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., … Barrett, S. C. H. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE, 3(7), e2802. doi:10.1371/journal.pone.0002802
Kress, W. J., & Erickson, D. L. (2007). A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi:10.1371/journal.pone.0000508
Karol, K. G., Arumuganathan, K., Boore, J. L., Duffy, A. M., Everett, K. D., Hall, J. D., … Wolf, P. G. (2010). Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evolutionary Biology, 10(1), 321. doi:10.1186/1471-2148-10-321
Brown, C. J., Todd, K. M., & Rosenzweig, R. F. (1998). Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution, 15(8), 931-942. doi:10.1093/oxfordjournals.molbev.a026009
Bekaert, M., & Conant, G. C. (2010). Copy Number Alterations among Mammalian Enzymes Cluster in the Metabolic Network. Molecular Biology and Evolution, 28(2), 1111-1121. doi:10.1093/molbev/msq296
Müh, F., Renger, T., & Zouni, A. (2008). Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: A closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiology and Biochemistry, 46(3), 238-264. doi:10.1016/j.plaphy.2008.01.003
Guskov, A., Gabdulkhakov, A., Broser, M., Glöckner, C., Hellmich, J., Kern, J., … Zouni, A. (2010). Recent Progress in the Crystallographic Studies of Photosystem II. ChemPhysChem, 11(6), 1160-1171. doi:10.1002/cphc.200900901
Lee, B.-C., Park, K., & Kim, D. (2008). Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins: Structure, Function, and Bioinformatics, 72(3), 863-872. doi:10.1002/prot.21972
Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17), 3252-3255. doi:10.1093/bioinformatics/bth352
Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253-1256. doi:10.1093/molbev/msn083
Phipps, C. J., Taylor, T. N., Taylor, E. L., Cúneo, N. R., Boucher, L. D., & Yao, X. (1998). OSMUNDA
(OSMUNDACEAE) FROM THE TRIASSIC OF Antarctica: an example of evolutionary stasis. American Journal of Botany, 85(6), 888-895. doi:10.2307/2446424
Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945
Suzuki, Y., & Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 16(10), 1315-1328. doi:10.1093/oxfordjournals.molbev.a026042
Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208-1222. doi:10.1093/molbev/msi105
Caporaso, J. G., Smit, S., Easton, B. C., Hunter, L., Huttley, G. A., & Knight, R. (2008). Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics. BMC Evolutionary Biology, 8(1), 327. doi:10.1186/1471-2148-8-327
Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 36(1), 96-99. doi:10.1007/bf02407308
Poon, A. F. Y., Lewis, F. I., Frost, S. D. W., & Kosakovsky Pond, S. L. (2008). Spidermonkey: rapid detection of co-evolving sites using Bayesian graphical models. Bioinformatics, 24(17), 1949-1950. doi:10.1093/bioinformatics/btn313
Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072
Gouveia-Oliveira, R., & Pedersen, A. G. (2007). Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation. Algorithms for Molecular Biology, 2(1). doi:10.1186/1748-7188-2-12
Martin, L. C., Gloor, G. B., Dunn, S. D., & Wahl, L. M. (2005). Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21(22), 4116-4124. doi:10.1093/bioinformatics/bti671
Makarova, K. S., Wolf, Y. I., van der Oost, J., & Koonin, E. V. (2009). Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct, 4(1), 29. doi:10.1186/1745-6150-4-29
[-]