- -

Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruíz González, Mario Javier es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.date.accessioned 2016-05-12T07:27:12Z
dc.date.available 2016-05-12T07:27:12Z
dc.date.issued 2013-07-22
dc.identifier.issn 1471-2148
dc.identifier.uri http://hdl.handle.net/10251/63947
dc.description.abstract [EN] Background: GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being essential to the cell. The folding activity proceeds through strong conformational changes mediated by the co-chaperonin GroES and ATP. Functions alternative to folding have been previously described for GroEL in different bacterial groups, supporting enormous functional and structural plasticity for this molecule and the existence of a hidden combinatorial code in the protein sequence enabling such functions. Describing this plasticity can shed light on the functional diversity of GroEL. We hypothesize that different overlapping sets of amino acids coevolve within GroEL, GroES and between both these proteins. Shifts in these coevolutionary relationships may inevitably lead to evolution of alternative functions. Results: We conducted the first coevolution analyses in an extensive bacterial phylogeny, revealing complex networks of evolutionary dependencies between residues in GroESL. These networks differed among bacterial groups and involved amino acid sites with functional importance and others with previously unsuspected functional potential. Coevolutionary networks formed statistically independent units among bacterial groups and map to structurally continuous regions in the protein, suggesting their functional link. Sites involved in coevolution fell within narrow structural regions, supporting dynamic combinatorial functional links involving similar protein domains. Moreover, coevolving sites within a bacterial group mapped to regions previously identified as involved in folding-unrelated functions, and thus, coevolution may mediate alternative functions. Conclusions: Our results highlight the evolutionary plasticity of GroEL across the entire bacterial phylogeny. Evidence on the functional importance of coevolving sites illuminates the as yet unappreciated functional diversity of proteins. es_ES
dc.description.sponsorship This study was supported by Science Foundation Ireland (10/RFP/GEN2685) and a grant from the Ministerio de Ciencia e Innovacion (BFU2009-12022) to MAF. MXRG is supported by the JAE DOC-2009, Ministerio de Ciencia e Innovacion. We thank two anonymous reviewers for useful comments to improve this study presentation.
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2148-13-156
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10/RFP/GEN2685/IE/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Ruíz González, MJ.; Fares Riaño, MA. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology. 13(156):1-13. https://doi.org/10.1186/1471-2148-13-156 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2148-13-156 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 156 es_ES
dc.relation.senia 259228 es_ES
dc.identifier.pmid 23875653 en_EN
dc.identifier.pmcid PMC3728108 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Science Foundation Ireland
dc.description.references Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.x es_ES
dc.description.references Radford, S. E. (2006). GroEL: More than Just a Folding Cage. Cell, 125(5), 831-833. doi:10.1016/j.cell.2006.05.021 es_ES
dc.description.references Lin, Z., & Rye, H. S. (2006). GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211-239. doi:10.1080/10409230600760382 es_ES
dc.description.references Mayhew, M., da Silva, A. C. R., Martin, J., Erdjument-Bromage, H., Tempst, P., & Hartl, F. U. (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 379(6564), 420-426. doi:10.1038/379420a0 es_ES
dc.description.references VanBogelen, R. A., Acton, M. A., & Neidhardt, F. C. (1987). Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes & Development, 1(6), 525-531. doi:10.1101/gad.1.6.525 es_ES
dc.description.references Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H.-C., Stines, A. P., … Hartl, F. U. (2005). Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell, 122(2), 209-220. doi:10.1016/j.cell.2005.05.028 es_ES
dc.description.references Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature, 371(6498), 578-586. doi:10.1038/371578a0 es_ES
dc.description.references Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature, 379(6560), 37-45. doi:10.1038/379037a0 es_ES
dc.description.references Xu, Z., Horwich, A. L., & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature, 388(6644), 741-750. doi:10.1038/41944 es_ES
dc.description.references Thirumalai, D., & Lorimer, G. H. (2001). Chaperonin-Mediated Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 30(1), 245-269. doi:10.1146/annurev.biophys.30.1.245 es_ES
dc.description.references Ellis, R. J. (2005). Chaperomics: In Vivo GroEL Function Defined. Current Biology, 15(17), R661-R663. doi:10.1016/j.cub.2005.08.025 es_ES
dc.description.references Ellis, R. J. (s. f.). Protein Misassembly. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, 1-13. doi:10.1007/978-0-387-39975-1_1 es_ES
dc.description.references Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two Families of Chaperonin: Physiology and Mechanism. Annual Review of Cell and Developmental Biology, 23(1), 115-145. doi:10.1146/annurev.cellbio.23.090506.123555 es_ES
dc.description.references Tuccinardi, D., Fioriti, E., Manfrini, S., D’Amico, E., & Pozzilli, P. (2011). DiaPep277 peptide therapy in the context of other immune intervention trials in type 1 diabetes. Expert Opinion on Biological Therapy, 11(9), 1233-1240. doi:10.1517/14712598.2011.599319 es_ES
dc.description.references Zonneveld-Huijssoon, E., Roord, S. T. A., de Jager, W., Klein, M., Albani, S., Anderton, S. M., … Prakken, B. J. (2011). Bystander suppression of experimental arthritis by nasal administration of a heat shock protein peptide. Annals of the Rheumatic Diseases, 70(12), 2199-2206. doi:10.1136/ard.2010.136994 es_ES
dc.description.references Ronaghy, A., de Jager, W., Zonneveld-Huijssoon, E., Klein, M. R., van Wijk, F., Rijkers, G. T., … Prakken, B. J. (2011). Vaccination leads to an aberrant FOXP3 T-cell response in non-remitting juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 70(11), 2037-2043. doi:10.1136/ard.2010.145151 es_ES
dc.description.references George, R., Kelly, S. M., Price, N. C., Erbse, A., Fisher, M., & Lund, P. A. (2004). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochemical and Biophysical Research Communications, 324(2), 822-828. doi:10.1016/j.bbrc.2004.09.140 es_ES
dc.description.references Rodríguez-Quiñones, F., Maguire, M., Wallington, E. J., Gould, P. S., Yerko, V., Downie, J. A., & Lund, P. A. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Archives of Microbiology, 183(4), 253-265. doi:10.1007/s00203-005-0768-7 es_ES
dc.description.references Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2005). GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 123(5), 861-873. doi:10.1016/j.cell.2005.09.012 es_ES
dc.description.references Bittner, A. N., Foltz, A., & Oke, V. (2006). Only One of Five groEL Genes Is Required for Viability and Successful Symbiosis in Sinorhizobium meliloti. Journal of Bacteriology, 189(5), 1884-1889. doi:10.1128/jb.01542-06 es_ES
dc.description.references Gould, P. S., Burgar, H. R., & Lund, P. A. (2007). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress & Chaperones, 12(2), 123. doi:10.1379/csc-227r.1 es_ES
dc.description.references Li, J., Wang, Y., Zhang, C. -y., Zhang, W. -y., Jiang, D. -m., Wu, Z. -h., … Li, Y. -z. (2010). Myxococcus xanthus Viability Depends on GroEL Supplied by Either of Two Genes, but the Paralogs Have Different Functions during Heat Shock, Predation, and Development. Journal of Bacteriology, 192(7), 1875-1881. doi:10.1128/jb.01458-09 es_ES
dc.description.references Wang, Y., Zhang, W., Zhang, Z., Li, J., Li, Z., Tan, Z., … Li, Y. (2013). Mechanisms Involved in the Functional Divergence of Duplicated GroEL Chaperonins in Myxococcus xanthus DK1622. PLoS Genetics, 9(2), e1003306. doi:10.1371/journal.pgen.1003306 es_ES
dc.description.references Fares, M. A., Barrio, E., Sabater-Muñoz, B., & Moya, A. (2002). The Evolution of the Heat-Shock Protein GroEL from Buchnera, the Primary Endosymbiont of Aphids, Is Governed by Positive Selection. Molecular Biology and Evolution, 19(7), 1162-1170. doi:10.1093/oxfordjournals.molbev.a004174 es_ES
dc.description.references McNally, D., & Fares, M. A. (2007). In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evolutionary Biology, 7(1), 81. doi:10.1186/1471-2148-7-81 es_ES
dc.description.references Liu, H., Kovács, E., & Lund, P. A. (2009). Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Letters, 583(14), 2365-2371. doi:10.1016/j.febslet.2009.06.027 es_ES
dc.description.references Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., & Taguchi, H. (2010). A systematic survey of in vivo obligate chaperonin-dependent substrates. The EMBO Journal, 29(9), 1552-1564. doi:10.1038/emboj.2010.52 es_ES
dc.description.references Buckle, A. M., Zahn, R., & Fersht, A. R. (1997). A structural model for GroEL-polypeptide recognition. Proceedings of the National Academy of Sciences, 94(8), 3571-3575. doi:10.1073/pnas.94.8.3571 es_ES
dc.description.references Fenton, W. A., Kashi, Y., Furtak, K., & Norwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614-619. doi:10.1038/371614a0 es_ES
dc.description.references Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293e es_ES
dc.description.references Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846 es_ES
dc.description.references Codoñer, F. M., O’Dea, S., & Fares, M. A. (2008). Reducing the false positive rate in the non-parametric analysis of molecular coevolution. BMC Evolutionary Biology, 8(1), 106. doi:10.1186/1471-2148-8-106 es_ES
dc.description.references Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038 es_ES
dc.description.references Hu, Y., Henderson, B., Lund, P. A., Tormay, P., Ahmed, M. T., Gurcha, S. S., … Coates, A. R. M. (2008). A Mycobacterium tuberculosis Mutant Lacking the groEL Homologue cpn60.1 Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 76(4), 1535-1546. doi:10.1128/iai.01078-07 es_ES
dc.description.references Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W., & van den Heuvel, J. F. J. M. (2000). Identifying the Determinants in the Equatorial Domain of Buchnera GroEL Implicated in Binding Potato Leafroll Virus. Journal of Virology, 74(10), 4541-4548. doi:10.1128/jvi.74.10.4541-4548.2000 es_ES
dc.description.references Buck, M. J., & Atchley, W. R. (2005). Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Molecular Biology and Evolution, 22(7), 1627-1634. doi:10.1093/molbev/msi157 es_ES
dc.description.references Gloor, G. B., Tyagi, G., Abrassart, D. M., Kingston, A. J., Fernandes, A. D., Dunn, S. D., & Brandl, C. J. (2010). Functionally Compensating Coevolving Positions Are Neither Homoplasic Nor Conserved in Clades. Molecular Biology and Evolution, 27(5), 1181-1191. doi:10.1093/molbev/msq004 es_ES
dc.description.references Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109 es_ES
dc.description.references Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493 es_ES
dc.description.references Travers, S. A. A., & Fares, M. A. (2007). Functional Coevolutionary Networks of the Hsp70–Hop–Hsp90 System Revealed through Computational Analyses. Molecular Biology and Evolution, 24(4), 1032-1044. doi:10.1093/molbev/msm022 es_ES
dc.description.references Travers, S. A. A., Tully, D. C., McCormack, G. P., & Fares, M. A. (2007). A Study of the Coevolutionary Patterns Operating within the env Gene of the HIV-1 Group M Subtypes. Molecular Biology and Evolution, 24(12), 2787-2801. doi:10.1093/molbev/msm213 es_ES
dc.description.references Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072 es_ES
dc.description.references Little, D. Y., & Chen, L. (2009). Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution. PLoS ONE, 4(3), e4762. doi:10.1371/journal.pone.0004762 es_ES
dc.description.references Tang, Y.-C., Chang, H.-C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., … Hayer-Hartl, M. (2006). Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein. Cell, 125(5), 903-914. doi:10.1016/j.cell.2006.04.027 es_ES
dc.description.references Yifrach, O., & Horovitz, A. (1995). Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry, 34(16), 5303-5308. doi:10.1021/bi00016a001 es_ES
dc.description.references Horovitz, A., Fridmann, Y., Kafri, G., & Yifrach, O. (2001). Review: Allostery in Chaperonins. Journal of Structural Biology, 135(2), 104-114. doi:10.1006/jsbi.2001.4377 es_ES
dc.description.references Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., … Norwich, A. L. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes. Cell, 83(4), 577-587. doi:10.1016/0092-8674(95)90098-5 es_ES
dc.description.references Fares, M. A., Ruiz-González, M. X., & Labrador, J. P. (2011). Protein coadaptation and the design of novel approaches to identify protein-protein interactions. IUBMB Life, 63(4), 264-271. doi:10.1002/iub.455 es_ES
dc.description.references Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404 es_ES
dc.description.references Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi:10.1093/nar/25.24.4876 es_ES
dc.description.references Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2010). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432. doi:10.1093/bioinformatics/btq675 es_ES
dc.description.references Fares, M. A., & Travers, S. A. A. (2006). A Novel Method for Detecting Intramolecular Coevolution: Adding a Further Dimension to Selective Constraints Analyses. Genetics, 173(1), 9-23. doi:10.1534/genetics.105.053249 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem