Mostrar el registro sencillo del ítem
dc.contributor.author | Ruíz González, Mario Javier | es_ES |
dc.contributor.author | Fares Riaño, Mario Ali | es_ES |
dc.date.accessioned | 2016-05-12T07:27:12Z | |
dc.date.available | 2016-05-12T07:27:12Z | |
dc.date.issued | 2013-07-22 | |
dc.identifier.issn | 1471-2148 | |
dc.identifier.uri | http://hdl.handle.net/10251/63947 | |
dc.description.abstract | [EN] Background: GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being essential to the cell. The folding activity proceeds through strong conformational changes mediated by the co-chaperonin GroES and ATP. Functions alternative to folding have been previously described for GroEL in different bacterial groups, supporting enormous functional and structural plasticity for this molecule and the existence of a hidden combinatorial code in the protein sequence enabling such functions. Describing this plasticity can shed light on the functional diversity of GroEL. We hypothesize that different overlapping sets of amino acids coevolve within GroEL, GroES and between both these proteins. Shifts in these coevolutionary relationships may inevitably lead to evolution of alternative functions. Results: We conducted the first coevolution analyses in an extensive bacterial phylogeny, revealing complex networks of evolutionary dependencies between residues in GroESL. These networks differed among bacterial groups and involved amino acid sites with functional importance and others with previously unsuspected functional potential. Coevolutionary networks formed statistically independent units among bacterial groups and map to structurally continuous regions in the protein, suggesting their functional link. Sites involved in coevolution fell within narrow structural regions, supporting dynamic combinatorial functional links involving similar protein domains. Moreover, coevolving sites within a bacterial group mapped to regions previously identified as involved in folding-unrelated functions, and thus, coevolution may mediate alternative functions. Conclusions: Our results highlight the evolutionary plasticity of GroEL across the entire bacterial phylogeny. Evidence on the functional importance of coevolving sites illuminates the as yet unappreciated functional diversity of proteins. | es_ES |
dc.description.sponsorship | This study was supported by Science Foundation Ireland (10/RFP/GEN2685) and a grant from the Ministerio de Ciencia e Innovacion (BFU2009-12022) to MAF. MXRG is supported by the JAE DOC-2009, Ministerio de Ciencia e Innovacion. We thank two anonymous reviewers for useful comments to improve this study presentation. | |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Evolutionary Biology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1471-2148-13-156 | |
dc.relation.projectID | info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10/RFP/GEN2685/IE/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Ruíz González, MJ.; Fares Riaño, MA. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology. 13(156):1-13. https://doi.org/10.1186/1471-2148-13-156 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1471-2148-13-156 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 156 | es_ES |
dc.relation.senia | 259228 | es_ES |
dc.identifier.pmid | 23875653 | en_EN |
dc.identifier.pmcid | PMC3728108 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Science Foundation Ireland | |
dc.description.references | Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.x | es_ES |
dc.description.references | Radford, S. E. (2006). GroEL: More than Just a Folding Cage. Cell, 125(5), 831-833. doi:10.1016/j.cell.2006.05.021 | es_ES |
dc.description.references | Lin, Z., & Rye, H. S. (2006). GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211-239. doi:10.1080/10409230600760382 | es_ES |
dc.description.references | Mayhew, M., da Silva, A. C. R., Martin, J., Erdjument-Bromage, H., Tempst, P., & Hartl, F. U. (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 379(6564), 420-426. doi:10.1038/379420a0 | es_ES |
dc.description.references | VanBogelen, R. A., Acton, M. A., & Neidhardt, F. C. (1987). Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes & Development, 1(6), 525-531. doi:10.1101/gad.1.6.525 | es_ES |
dc.description.references | Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H.-C., Stines, A. P., … Hartl, F. U. (2005). Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell, 122(2), 209-220. doi:10.1016/j.cell.2005.05.028 | es_ES |
dc.description.references | Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature, 371(6498), 578-586. doi:10.1038/371578a0 | es_ES |
dc.description.references | Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature, 379(6560), 37-45. doi:10.1038/379037a0 | es_ES |
dc.description.references | Xu, Z., Horwich, A. L., & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature, 388(6644), 741-750. doi:10.1038/41944 | es_ES |
dc.description.references | Thirumalai, D., & Lorimer, G. H. (2001). Chaperonin-Mediated Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 30(1), 245-269. doi:10.1146/annurev.biophys.30.1.245 | es_ES |
dc.description.references | Ellis, R. J. (2005). Chaperomics: In Vivo GroEL Function Defined. Current Biology, 15(17), R661-R663. doi:10.1016/j.cub.2005.08.025 | es_ES |
dc.description.references | Ellis, R. J. (s. f.). Protein Misassembly. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, 1-13. doi:10.1007/978-0-387-39975-1_1 | es_ES |
dc.description.references | Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two Families of Chaperonin: Physiology and Mechanism. Annual Review of Cell and Developmental Biology, 23(1), 115-145. doi:10.1146/annurev.cellbio.23.090506.123555 | es_ES |
dc.description.references | Tuccinardi, D., Fioriti, E., Manfrini, S., D’Amico, E., & Pozzilli, P. (2011). DiaPep277 peptide therapy in the context of other immune intervention trials in type 1 diabetes. Expert Opinion on Biological Therapy, 11(9), 1233-1240. doi:10.1517/14712598.2011.599319 | es_ES |
dc.description.references | Zonneveld-Huijssoon, E., Roord, S. T. A., de Jager, W., Klein, M., Albani, S., Anderton, S. M., … Prakken, B. J. (2011). Bystander suppression of experimental arthritis by nasal administration of a heat shock protein peptide. Annals of the Rheumatic Diseases, 70(12), 2199-2206. doi:10.1136/ard.2010.136994 | es_ES |
dc.description.references | Ronaghy, A., de Jager, W., Zonneveld-Huijssoon, E., Klein, M. R., van Wijk, F., Rijkers, G. T., … Prakken, B. J. (2011). Vaccination leads to an aberrant FOXP3 T-cell response in non-remitting juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 70(11), 2037-2043. doi:10.1136/ard.2010.145151 | es_ES |
dc.description.references | George, R., Kelly, S. M., Price, N. C., Erbse, A., Fisher, M., & Lund, P. A. (2004). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochemical and Biophysical Research Communications, 324(2), 822-828. doi:10.1016/j.bbrc.2004.09.140 | es_ES |
dc.description.references | Rodríguez-Quiñones, F., Maguire, M., Wallington, E. J., Gould, P. S., Yerko, V., Downie, J. A., & Lund, P. A. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Archives of Microbiology, 183(4), 253-265. doi:10.1007/s00203-005-0768-7 | es_ES |
dc.description.references | Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2005). GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 123(5), 861-873. doi:10.1016/j.cell.2005.09.012 | es_ES |
dc.description.references | Bittner, A. N., Foltz, A., & Oke, V. (2006). Only One of Five groEL Genes Is Required for Viability and Successful Symbiosis in Sinorhizobium meliloti. Journal of Bacteriology, 189(5), 1884-1889. doi:10.1128/jb.01542-06 | es_ES |
dc.description.references | Gould, P. S., Burgar, H. R., & Lund, P. A. (2007). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress & Chaperones, 12(2), 123. doi:10.1379/csc-227r.1 | es_ES |
dc.description.references | Li, J., Wang, Y., Zhang, C. -y., Zhang, W. -y., Jiang, D. -m., Wu, Z. -h., … Li, Y. -z. (2010). Myxococcus xanthus Viability Depends on GroEL Supplied by Either of Two Genes, but the Paralogs Have Different Functions during Heat Shock, Predation, and Development. Journal of Bacteriology, 192(7), 1875-1881. doi:10.1128/jb.01458-09 | es_ES |
dc.description.references | Wang, Y., Zhang, W., Zhang, Z., Li, J., Li, Z., Tan, Z., … Li, Y. (2013). Mechanisms Involved in the Functional Divergence of Duplicated GroEL Chaperonins in Myxococcus xanthus DK1622. PLoS Genetics, 9(2), e1003306. doi:10.1371/journal.pgen.1003306 | es_ES |
dc.description.references | Fares, M. A., Barrio, E., Sabater-Muñoz, B., & Moya, A. (2002). The Evolution of the Heat-Shock Protein GroEL from Buchnera, the Primary Endosymbiont of Aphids, Is Governed by Positive Selection. Molecular Biology and Evolution, 19(7), 1162-1170. doi:10.1093/oxfordjournals.molbev.a004174 | es_ES |
dc.description.references | McNally, D., & Fares, M. A. (2007). In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evolutionary Biology, 7(1), 81. doi:10.1186/1471-2148-7-81 | es_ES |
dc.description.references | Liu, H., Kovács, E., & Lund, P. A. (2009). Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Letters, 583(14), 2365-2371. doi:10.1016/j.febslet.2009.06.027 | es_ES |
dc.description.references | Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., & Taguchi, H. (2010). A systematic survey of in vivo obligate chaperonin-dependent substrates. The EMBO Journal, 29(9), 1552-1564. doi:10.1038/emboj.2010.52 | es_ES |
dc.description.references | Buckle, A. M., Zahn, R., & Fersht, A. R. (1997). A structural model for GroEL-polypeptide recognition. Proceedings of the National Academy of Sciences, 94(8), 3571-3575. doi:10.1073/pnas.94.8.3571 | es_ES |
dc.description.references | Fenton, W. A., Kashi, Y., Furtak, K., & Norwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614-619. doi:10.1038/371614a0 | es_ES |
dc.description.references | Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293e | es_ES |
dc.description.references | Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846 | es_ES |
dc.description.references | Codoñer, F. M., O’Dea, S., & Fares, M. A. (2008). Reducing the false positive rate in the non-parametric analysis of molecular coevolution. BMC Evolutionary Biology, 8(1), 106. doi:10.1186/1471-2148-8-106 | es_ES |
dc.description.references | Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038 | es_ES |
dc.description.references | Hu, Y., Henderson, B., Lund, P. A., Tormay, P., Ahmed, M. T., Gurcha, S. S., … Coates, A. R. M. (2008). A Mycobacterium tuberculosis Mutant Lacking the groEL Homologue cpn60.1 Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 76(4), 1535-1546. doi:10.1128/iai.01078-07 | es_ES |
dc.description.references | Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W., & van den Heuvel, J. F. J. M. (2000). Identifying the Determinants in the Equatorial Domain of Buchnera GroEL Implicated in Binding Potato Leafroll Virus. Journal of Virology, 74(10), 4541-4548. doi:10.1128/jvi.74.10.4541-4548.2000 | es_ES |
dc.description.references | Buck, M. J., & Atchley, W. R. (2005). Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Molecular Biology and Evolution, 22(7), 1627-1634. doi:10.1093/molbev/msi157 | es_ES |
dc.description.references | Gloor, G. B., Tyagi, G., Abrassart, D. M., Kingston, A. J., Fernandes, A. D., Dunn, S. D., & Brandl, C. J. (2010). Functionally Compensating Coevolving Positions Are Neither Homoplasic Nor Conserved in Clades. Molecular Biology and Evolution, 27(5), 1181-1191. doi:10.1093/molbev/msq004 | es_ES |
dc.description.references | Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109 | es_ES |
dc.description.references | Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493 | es_ES |
dc.description.references | Travers, S. A. A., & Fares, M. A. (2007). Functional Coevolutionary Networks of the Hsp70–Hop–Hsp90 System Revealed through Computational Analyses. Molecular Biology and Evolution, 24(4), 1032-1044. doi:10.1093/molbev/msm022 | es_ES |
dc.description.references | Travers, S. A. A., Tully, D. C., McCormack, G. P., & Fares, M. A. (2007). A Study of the Coevolutionary Patterns Operating within the env Gene of the HIV-1 Group M Subtypes. Molecular Biology and Evolution, 24(12), 2787-2801. doi:10.1093/molbev/msm213 | es_ES |
dc.description.references | Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072 | es_ES |
dc.description.references | Little, D. Y., & Chen, L. (2009). Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution. PLoS ONE, 4(3), e4762. doi:10.1371/journal.pone.0004762 | es_ES |
dc.description.references | Tang, Y.-C., Chang, H.-C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., … Hayer-Hartl, M. (2006). Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein. Cell, 125(5), 903-914. doi:10.1016/j.cell.2006.04.027 | es_ES |
dc.description.references | Yifrach, O., & Horovitz, A. (1995). Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry, 34(16), 5303-5308. doi:10.1021/bi00016a001 | es_ES |
dc.description.references | Horovitz, A., Fridmann, Y., Kafri, G., & Yifrach, O. (2001). Review: Allostery in Chaperonins. Journal of Structural Biology, 135(2), 104-114. doi:10.1006/jsbi.2001.4377 | es_ES |
dc.description.references | Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., … Norwich, A. L. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes. Cell, 83(4), 577-587. doi:10.1016/0092-8674(95)90098-5 | es_ES |
dc.description.references | Fares, M. A., Ruiz-González, M. X., & Labrador, J. P. (2011). Protein coadaptation and the design of novel approaches to identify protein-protein interactions. IUBMB Life, 63(4), 264-271. doi:10.1002/iub.455 | es_ES |
dc.description.references | Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404 | es_ES |
dc.description.references | Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi:10.1093/nar/25.24.4876 | es_ES |
dc.description.references | Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2010). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432. doi:10.1093/bioinformatics/btq675 | es_ES |
dc.description.references | Fares, M. A., & Travers, S. A. A. (2006). A Novel Method for Detecting Intramolecular Coevolution: Adding a Further Dimension to Selective Constraints Analyses. Genetics, 173(1), 9-23. doi:10.1534/genetics.105.053249 | es_ES |