- -

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

Mostrar el registro completo del ítem

Sánchez, G.; Martinez, J.; Romeu, J.; Garcia, J.; Monforte Gilabert, AJ.; Badenes, M.; Granell Richart, A. (2014). The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology. 14(137):1-16. https://doi.org/10.1186/1471-2229-14-137

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64004

Ficheros en el ítem

Metadatos del ítem

Título: The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population
Autor: Sánchez, Gerardo Martinez, J. Romeu, J Garcia, J Monforte Gilabert, Antonio José Badenes, M.L. Granell Richart, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Background: The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/1471-2229-14-137
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1471-2229-14-137
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2010-20595/ES/PROGRAMAS DE MEJORA DEL ALBARICOQUERO Y MELOCOTONERO PARA LA OBTENCION Y SELECCION DE NUEVAS VARIEDADES DE ALTA CALIDAD. DESARROLLO DE HERRAMIENTAS GENETICAS Y GENOMICAS/
Agradecimientos:
GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria, Argentina). HS-SPME-GC-MS analyses were performed at the Metabolomic lab facilities at the IBMCP (CSIC) in Spain. This project has been ...[+]
Tipo: Artículo

References

Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507

Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992

Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932 [+]
Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507

Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992

Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932

Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459g

Greger, V., & Schieberle, P. (2007). Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 55(13), 5221-5228. doi:10.1021/jf0705015

Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172e

Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153i

XI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.x

Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24

Sánchez, G., Venegas-Calerón, M., Salas, J. J., Monforte, A., Badenes, M. L., & Granell, A. (2013). An integrative «omics» approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics, 14(1), 343. doi:10.1186/1471-2164-14-343

Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586

Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668

Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318

Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086

Romeu, J. F., Monforte, A. J., Sánchez, G., Granell, A., García-Brunton, J., Badenes, M. L., & Ríos, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology, 14(1), 52. doi:10.1186/1471-2229-14-52

Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3

Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77

Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130

Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303

Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. (2008). QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24(5), 721-723. doi:10.1093/bioinformatics/btm494

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379

Quilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-z

Dirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38

Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W., & Arus, P. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, 101(26), 9891-9896. doi:10.1073/pnas.0307937101

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem