- -

Transient absorption spectroscopy and photochemical reactivity of CAU-8

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transient absorption spectroscopy and photochemical reactivity of CAU-8

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baldovi, Herme G. es_ES
dc.contributor.author Krüger, Martin es_ES
dc.contributor.author Reinsch, Helge es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Stock, Norbert es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-05-13T10:00:34Z
dc.date.available 2016-05-13T10:00:34Z
dc.date.issued 2015
dc.identifier.issn 2050-7526
dc.identifier.uri http://hdl.handle.net/10251/64020
dc.description.abstract [EN] CAU-8 is a metal organic framework with the composition [Al(OH)(BPDC)] (BPDC: 4,4'-benzophenone dicarboxylate) whose structure is constituted by chains of corner-sharing AlO6 octahedra connected by BPDC linkers, giving rise to an array of non-intersecting channels. According to the well known photochemical behavior of benzophenone, in the present study we have been able to obtain spectroscopic evidence of the photochemical reactivity of CAU-8, including the generation of short-lived triplet excited states that react with either electron donors (triethylamine) or hydrogen donors (isopropanol) and lead to the corresponding radical anions or ketyl radicals, respectively. These two species have long half live times in CAU-8 and their decay is not complete hundreds of microseconds after the laser pulse. The photochemical activity of the BPDC linker in CAU-8 has been used to promote the radical-induced (co)polymerization of styrene and the coupling of BPDC and ethanol has been followed with IR spectroscopy. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ 2012/32315) is gratefully acknowledged. We also thank the Generalitat Valenciana for financial assistance (Prometeo 2012/2013). HGB also thanks the Generalitat Valenciana for a postgraduate scholarship.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry C es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CAU-8 es_ES
dc.subject Transient absorption spectrum es_ES
dc.subject Photoreactivity metal org framework es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Transient absorption spectroscopy and photochemical reactivity of CAU-8 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C4TC02518K
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Baldovi, HG.; Krüger, M.; Reinsch, H.; Alvaro Rodríguez, MM.; Stock, N.; García Gómez, H. (2015). Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C. 3(15):3607-3613. https://doi.org/10.1039/C4TC02518K es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 3607 es_ES
dc.description.upvformatpfin 3613 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 15 es_ES
dc.relation.senia 298325 es_ES
dc.identifier.eissn 2050-7534
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references A. Gilbert and J. E.Baggot, Essentials of Molecular Photochemistry, CRC, Boca Raton, 1991 es_ES
dc.description.references N. J. Turro , V.Ramamrthy and J. C.Scaiano, Principles of Organic Photochemistry, University Science Books, New York, 2009 es_ES
dc.description.references N. J. Turro , J. C.Scaiano and V.Ramamurthy, Principles of Organic Photochemistry. An Introduction, 2008 es_ES
dc.description.references V. Ramamurthy , Photochemistry in Organized and Confined Media, Wiley, New York, 1995 es_ES
dc.description.references Avnir, D., Johnston, L. J., de Mayo, P., & Wong, S. K. (1981). Surface photochemistry: radical pair combination on a silica gel surface and in micelles. Journal of the Chemical Society, Chemical Communications, (18), 958. doi:10.1039/c39810000958 es_ES
dc.description.references Bauer, R. K., Borenstein, R., De Mayo, P., Okada, K., Rafalska, M., Ware, W. R., & Wu, K. C. (1982). Surface photochemistry: translational motion of organic molecules adsorbed on silica gel and its consequences. Journal of the American Chemical Society, 104(17), 4635-4644. doi:10.1021/ja00381a022 es_ES
dc.description.references De Mayo, P., Nakamura, A., Tsang, P. W. K., & Wong, S. K. (1982). Surface photochemistry: deviation of the course of reaction in benzoin ether photolysis by adsorption on silica gel. Journal of the American Chemical Society, 104(24), 6824-6825. doi:10.1021/ja00388a078 es_ES
dc.description.references De Mayo, P., Okada, K., Rafalska, M., Weedon, A. C., & Wong, G. S. K. (1981). Surface photochemistry: the photodimerisation of acenaphthylene on dry silica gel. Journal of the Chemical Society, Chemical Communications, (16), 820. doi:10.1039/c39810000820 es_ES
dc.description.references Johnston, L. J., de Mayo, P., & Wong, S. K. (1982). Surface photochemistry: evidence for rotational and translational movement of cyanopropyl radicals on a silica gel surface. Journal of the Chemical Society, Chemical Communications, (19), 1106. doi:10.1039/c39820001106 es_ES
dc.description.references Alvaro, M., Fornés, V., García, S., García, H., & Scaiano, J. C. (1998). Intrazeolite Photochemistry. 20. Characterization of Highly Luminescent Europium Complexes inside Zeolites. The Journal of Physical Chemistry B, 102(44), 8744-8750. doi:10.1021/jp980669g es_ES
dc.description.references Alvaro, M., García, H., García, S., Márquez, F., & Scaiano, J. C. (1997). Intrazeolite Photochemistry. 17. Zeolites as Electron Donors:  Photolysis of Methylviologen Incorporated within Zeolites. The Journal of Physical Chemistry B, 101(16), 3043-3051. doi:10.1021/jp9628850 es_ES
dc.description.references Scaiano, J. C., & García, H. (1999). Intrazeolite Photochemistry:  Toward Supramolecular Control of Molecular Photochemistry. Accounts of Chemical Research, 32(9), 783-793. doi:10.1021/ar9702536 es_ES
dc.description.references Hashimoto, S. (2011). Optical Spectroscopy and Microscopy Studies on the Spatial Distribution and Reaction Dynamics in Zeolites. The Journal of Physical Chemistry Letters, 2(5), 509-519. doi:10.1021/jz101572u es_ES
dc.description.references Hashimoto, S., Moon, H. R., & Yoon, K. B. (2007). Optical microscopy study of zeolite-dye composite materials. Microporous and Mesoporous Materials, 101(1-2), 10-18. doi:10.1016/j.micromeso.2006.12.010 es_ES
dc.description.references Hashimoto, S., Uehara, K., Sogawa, K., Takada, M., & Fukumura, H. (2006). Application of time- and space-resolved fluorescence spectroscopy to the distribution of guest species into micrometer-sized zeolite crystals. Physical Chemistry Chemical Physics, 8(12), 1451. doi:10.1039/b513832a es_ES
dc.description.references Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 es_ES
dc.description.references Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, (14), 2781. doi:10.1039/b305705b es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 es_ES
dc.description.references Allendorf, M. D., Bauer, C. A., Bhakta, R. K., & Houk, R. J. T. (2009). Luminescent metal–organic frameworks. Chemical Society Reviews, 38(5), 1330. doi:10.1039/b802352m es_ES
dc.description.references Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101d es_ES
dc.description.references Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k es_ES
dc.description.references Kent, C. A., Mehl, B. P., Ma, L., Papanikolas, J. M., Meyer, T. J., & Lin, W. (2010). Energy Transfer Dynamics in Metal−Organic Frameworks. Journal of the American Chemical Society, 132(37), 12767-12769. doi:10.1021/ja102804s es_ES
dc.description.references Mahata, P., Madras, G., & Natarajan, S. (2006). Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds. The Journal of Physical Chemistry B, 110(28), 13759-13768. doi:10.1021/jp0622381 es_ES
dc.description.references Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 es_ES
dc.description.references De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411 es_ES
dc.description.references Lopez, H. A., Dhakshinamoorthy, A., Ferrer, B., Atienzar, P., Alvaro, M., & Garcia, H. (2011). Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices. The Journal of Physical Chemistry C, 115(45), 22200-22206. doi:10.1021/jp206919m es_ES
dc.description.references Tachikawa, T., Choi, J. R., Fujitsuka, M., & Majima, T. (2008). Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C, 112(36), 14090-14101. doi:10.1021/jp803620v es_ES
dc.description.references Beckett, A., & Porter, G. (1963). Primary photochemical processes in aromatic molecules. Part 9.—Photochemistry of benzophenone in solution. Trans. Faraday Soc., 59(0), 2038-2050. doi:10.1039/tf9635902038 es_ES
dc.description.references Boscá, F., Miranda, M. A., Carganico, G., & Mauleon, D. (1994). PHOTOCHEMICAL AND PHOTOBIOLOGICAL PROPERTIES OF KETOPROFEN ASSOCIATED WITH THE BENZOPHENONE CHROMOPHORE. Photochemistry and Photobiology, 60(2), 96-101. doi:10.1111/j.1751-1097.1994.tb05073.x es_ES
dc.description.references Kazanis, S., Azarani, A., & Johnston, L. J. (1991). Diffuse reflectance laser flash photolysis studies of reactions of triplet benzophenone with hydrogen donors on silica. The Journal of Physical Chemistry, 95(11), 4430-4435. doi:10.1021/j100164a049 es_ES
dc.description.references Sakamoto, M., Fujistuka, M., & Majima, T. (2009). Light as a construction tool of metal nanoparticles: Synthesis and mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 33-56. doi:10.1016/j.jphotochemrev.2008.11.002 es_ES
dc.description.references Scaiano, J. C., Abuin, E. B., & Stewart, L. C. (1982). Photochemistry of benzophenone in micelles. Formation and decay of radical pairs. Journal of the American Chemical Society, 104(21), 5673-5679. doi:10.1021/ja00385a020 es_ES
dc.description.references Reinsch, H., Krüger, M., Marrot, J., & Stock, N. (2013). First Keto-Functionalized Microporous Al-Based Metal–Organic Framework: [Al(OH)(O2C-C6H4-CO-C6H4-CO2)]. Inorganic Chemistry, 52(4), 1854-1859. doi:10.1021/ic301961q es_ES
dc.description.references Baldoví, H. G., Ferrer, B., Álvaro, M., & García, H. (2014). Microsecond Transient Absorption Spectra of Suspended Semiconducting Metal Oxide Nanoparticles. The Journal of Physical Chemistry C, 118(17), 9275-9282. doi:10.1021/jp5018345 es_ES
dc.description.references Laurier, K. G. M., Fron, E., Atienzar, P., Kennes, K., Garcia, H., Van der Auweraer, M., … Roeffaers, M. B. J. (2014). Delayed electron–hole pair recombination in iron(iii)-oxo metal–organic frameworks. Phys. Chem. Chem. Phys., 16(11), 5044-5047. doi:10.1039/c3cp55028a es_ES
dc.description.references Alvaro, M., Aprile, C., Ferrer, B., & Garcia, H. (2007). Functional Molecules from Single Wall Carbon Nanotubes. Photoinduced Solubility of Short Single Wall Carbon Nanotube Residues by Covalent Anchoring of 2,4,6-Triarylpyrylium Units. Journal of the American Chemical Society, 129(17), 5647-5655. doi:10.1021/ja0690520 es_ES
dc.description.references Martínez, L. J., & Scaiano, J. C. (1997). Transient Intermediates in the Laser Flash Photolysis of Ketoprofen in Aqueous Solutions:  Unusual Photochemistry for the Benzophenone Chromophore. Journal of the American Chemical Society, 119(45), 11066-11070. doi:10.1021/ja970818t es_ES
dc.description.references Ferreira, L. F. V., Ferreira, M. R. V., Oliveira, A. S., Branco, T. J. F., Prata, J. V., & Moreira, J. C. (2001). Diffuse reflectance studies of β-phenylpropiophenone and benzophenone inclusion complexes with calix[4], [6] and [8]arenesDedicated to Professor Frank Wilkinson on the occasion of his retirement. Physical Chemistry Chemical Physics, 4(2), 204-210. doi:10.1039/b106760p es_ES
dc.description.references Sakamoto, M., Cai, X., Hara, M., Tojo, S., Fujitsuka, M., & Majima, T. (2004). Transient Absorption Spectra and Lifetimes of Benzophenone Ketyl Radicals in the Excited State. The Journal of Physical Chemistry A, 108(40), 8147-8150. doi:10.1021/jp047058a es_ES
dc.description.references Tsubomura, H., Yamamoto, N., & Tanaka, S. (1967). Transient absorption spectra of benzophenone studied by the flash excitation. Chemical Physics Letters, 1(8), 309-310. doi:10.1016/0009-2614(67)80001-0 es_ES
dc.description.references Devadoss, C., & Fessenden, R. W. (1991). Picosecond and nanosecond studies of the photoreduction of benzophenone by N,N-diethylaniline and triethylamine. The Journal of Physical Chemistry, 95(19), 7253-7260. doi:10.1021/j100172a030 es_ES
dc.description.references Viltres Costa, C., Grela, M. A., & Churio, M. S. (1996). On the yield of intermediates formed in the photoreduction of benzophenone. Journal of Photochemistry and Photobiology A: Chemistry, 99(1), 51-56. doi:10.1016/1010-6030(96)04327-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem