- -

Solvatochromic and Single Crystal Studies of Two Neutral Triarylmethane Dyes with a Quinone Methide Structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solvatochromic and Single Crystal Studies of Two Neutral Triarylmethane Dyes with a Quinone Methide Structure

Mostrar el registro completo del ítem

Chulvi, K.; Costero Nieto, AM.; Ochando Gomez, L.; Gil Grau, S.; Vivancos, J.; Gavina, P. (2015). Solvatochromic and Single Crystal Studies of Two Neutral Triarylmethane Dyes with a Quinone Methide Structure. Molecules. 20(11):20688-20698. https://doi.org/10.3390/molecules201119724

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64021

Ficheros en el ítem

Metadatos del ítem

Título: Solvatochromic and Single Crystal Studies of Two Neutral Triarylmethane Dyes with a Quinone Methide Structure
Autor: Chulvi, Katherine Costero Nieto, Ana María OCHANDO GOMEZ, LUIS-ENRIQUE Gil Grau, Salvador Vivancos, José-Luis Gavina, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria
Fecha difusión:
Resumen:
The crystal structure of two neutral triarylmethane dyes with a p-quinone methide core was determined by X-ray diffraction analysis. The spectroscopic characteristics of both compounds in 23 solvents with different polarities ...[+]
Palabras clave: Triarylmethane dyes , Crystal structure , Solvatochromic studies
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules201119724
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/molecules201119724
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO /
Agradecimientos:
The authors thank the Direccion General de Investigacion Cientifica y Tecnica DGICYT and European Fondo Europeo de Desarrollo Regional FEDER funds (MAT2012-38429-C04-01 and -02) and Generalitat Valenciana (PROMETEOII/2014/047) ...[+]
Tipo: Artículo

References

Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 [+]
Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820

Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a

Xi, C., Liu, Z., Kong, L., Hu, X., & Liu, S. (2008). Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta, 613(1), 83-90. doi:10.1016/j.aca.2008.02.019

Eldem, Y., & Özer, I. (2004). Electrophilic reactivity of cationic triarylmethane dyes towards proteins and protein-related nucleophiles. Dyes and Pigments, 60(1), 49-54. doi:10.1016/s0143-7208(03)00128-1

Jang, M.-S., Kang, N.-Y., Kim, K.-S., Kim, C.-H., Lee, J.-H., & Lee, Y.-C. (2007). Mutational analysis of NADH-binding residues in triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P. FEMS Microbiology Letters, 271(1), 78-82. doi:10.1111/j.1574-6968.2007.00709.x

Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., Sancenón, F., & Gaviña, P. (2013). Selective and sensitive chromogenic detection of cyanide and HCN in solution and in gas phase. Chemical Communications, 49(50), 5669. doi:10.1039/c3cc80006g

Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241

Borisov, S. M., & Klimant, I. (2013). A versatile approach for ratiometric time-resolved read-out of colorimetric chemosensors using broadband phosphors as secondary emitters. Analytica Chimica Acta, 787, 219-225. doi:10.1016/j.aca.2013.05.032

Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8

Ramkumar, S., & Anandan, S. (2013). Bibridged bianchoring metal-free dyes based on phenoxazine and triphenyl amine as donors for dye-sensitized solar cell applications. RSC Advances, 3(44), 21535. doi:10.1039/c3ra42852d

Lewis, G. N., Magel, T. T., & Lipkin, D. (1942). Isomers of Crystal Violet Ion. Their Absorption and Re-emission of Light. Journal of the American Chemical Society, 64(8), 1774-1782. doi:10.1021/ja01260a009

Duxbury, D. F. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chemical Reviews, 93(1), 381-433. doi:10.1021/cr00017a018

Lueck, H. B., McHale, J. L., & Edwards, W. D. (1992). Symmetry-breaking solvent effects on the electronic structure and spectra of a series of triphenylmethane dyes. Journal of the American Chemical Society, 114(7), 2342-2348. doi:10.1021/ja00033a007

Maruyama, Y., Ishikawa, M., & Satozono, H. (1996). Femtosecond Isomerization of Crystal Violet in Alcohols. Journal of the American Chemical Society, 118(26), 6257-6263. doi:10.1021/ja960024z

Ishikawa, M., & Maruyama, Y. (1994). Femtosecond spectral hole-burning of crystal violet in methanol. New evidence for ground state conformers. Chemical Physics Letters, 219(5-6), 416-420. doi:10.1016/0009-2614(94)00109-x

Angeloni, L., Smulevich, G., & Marzocchi, M. P. (1980). Resonance raman spectra of conjugated chromophores. evidence for electronic and vibrational couplings in crystal violet. Journal of Molecular Structure, 61, 331-336. doi:10.1016/0022-2860(80)85158-1

Clark, F. T., & Drickamer, H. G. (1986). High-pressure study of triphenylmethane dyes in polymeric and aqueous media. The Journal of Physical Chemistry, 90(4), 589-592. doi:10.1021/j100276a021

McKay, R. B., & Hillson, P. J. (1965). Metachromatic behaviour of dyes in solution. Interpretation on the basis of interaction between dye ions and counter-ions. Transactions of the Faraday Society, 61, 1800. doi:10.1039/tf9656101800

Oliveira, C. S., Branco, K. P., Baptista, M. S., & Indig, G. L. (2002). Solvent and concentration effects on the visible spectra of tri-para-dialkylamino-substituted triarylmethane dyes in liquid solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(13), 2971-2982. doi:10.1016/s1386-1425(02)00044-6

Lewis, L. M., & Indig, G. L. (2000). Solvent effects on the spectroscopic properties of triarylmethane dyes. Dyes and Pigments, 46(3), 145-154. doi:10.1016/s0143-7208(00)00049-8

Kamlet, M. J., Abboud, J. L., & Taft, R. W. (1977). The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities. Journal of the American Chemical Society, 99(18), 6027-6038. doi:10.1021/ja00460a031

Kamlet, M. J., Abboud, J. L. M., Abraham, M. H., & Taft, R. W. (1983). Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. The Journal of Organic Chemistry, 48(17), 2877-2887. doi:10.1021/jo00165a018

Reichardt, C. (1994). Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, 94(8), 2319-2358. doi:10.1021/cr00032a005

Filarowski, A., Lopatkova, M., Lipkowski, P., Van der Auweraer, M., Leen, V., & Dehaen, W. (2014). Solvatochromism of BODIPY-Schiff Dye. The Journal of Physical Chemistry B, 119(6), 2576-2584. doi:10.1021/jp508718d

Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218

Farrugia, L. J. (2012). WinGXandORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. doi:10.1107/s0021889812029111

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., … Wood, P. A. (2008). Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466-470. doi:10.1107/s0021889807067908

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem