- -

Unique distal size selectivity with a digold catalyst during alkyne homocoupling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unique distal size selectivity with a digold catalyst during alkyne homocoupling

Mostrar el registro completo del ítem

Leyva Perez, A.; Domenech Carbo, A.; Corma Canós, A. (2015). Unique distal size selectivity with a digold catalyst during alkyne homocoupling. Nature Communications. 6. https://doi.org/10.1038/ncomms7703

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64023

Ficheros en el ítem

Metadatos del ítem

Título: Unique distal size selectivity with a digold catalyst during alkyne homocoupling
Autor: Leyva Perez, Antonio Domenech Carbo, Antonio Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Metal-catalysed chemical reactions are often controlled by steric hindrance around the metal atom and it is rare that substituents far away of the reaction site could be differentiated during reaction, particularly if they ...[+]
Palabras clave: HOMOGENEOUS GOLD CATALYSIS , C-H ACTIVATION , TERMINAL ALKYNES , COUPLING REACTIONS , COMPLEXES , TRANSMETALATION , ALKENES , CYCLIZATION , GOLD(III) , ACETYLIDE
Derechos de uso: Reserva de todos los derechos
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms7703
Editorial:
Nature Publishing Group
Versión del editor: http://dx.doi.org/10.1038/ncomms7703
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
Agradecimientos:
Financial support by Consolider-Ingenio 2010 (proyecto MULTICAT) and Severo Ochoa programs from MCIINN and Prometeo program from Generalitat Valenciana is acknowledged. A. L.-P. thanks ITQ for the concession of a contract. ...[+]
Tipo: Artículo

References

Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012) .

Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation–induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014) .

Denayer, J. F. M. et al. Rotational entropy driven separation of alkane/isoalkane mixtures in zeolite cages. Angew. Chem. Int. Ed. 44, 400–403 (2005) . [+]
Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012) .

Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation–induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014) .

Denayer, J. F. M. et al. Rotational entropy driven separation of alkane/isoalkane mixtures in zeolite cages. Angew. Chem. Int. Ed. 44, 400–403 (2005) .

Corma, A., Rey, F., Rius, J., Sabater, M. J. & Valencia, S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431, 287–290 (2004) .

Cantín, A. et al. Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J. Am. Chem. Soc. 127, 11560–11561 (2005) .

Hashmi, A. S. K. Gold-catalysed organic reactions. Chem. Rev. 107, 3180–3211 (2007) .

de Haro, T. & Nevado, C. On gold-mediated C–H activation processes. Synthesis 16, 2530–2539 (2011) .

Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011) .

Zhang, L. A Non-diazo approach to α-oxo gold carbenes via gold-catalysed alkyne oxidation. Acc. Chem. Res. 47, 877–888 (2014) .

Boronat, M., Leyva-Pérez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014) .

Corma, A., Leyva-Pérez, A. & Sabater, M. J. Gold-catalysed carbon–heteroatom bond–forming reactions. Chem. Rev. 111, 1657–1712 (2011) .

Hashmi, A. S. K. Dual gold catalysis. Acc. Chem. Res. 47, 864–876 (2014) .

Brenzovich, W. E. Jr et al. Gold-catalysed intramolecular aminoarylation of alkenes: C-C bond formation through bimolecular reductive elimination. Angew. Chem. Int. Ed. 49, 5519–5522 (2010) .

Tkatchouk, E. et al. Two metals are better than one in the gold catalysed oxidative heteroarylation of alkenes. J. Am. Chem. Soc. 133, 14293–14300 (2011) .

Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed. 39, 2632–2657 (2000) .

Stefani, H. A., Guarezemini, A. S. & Cella, R. Homocoupling reactions of alkynes, alkenes and alkyl compounds. Tetrahedron 66, 7871–7918 (2010) .

Leyva-Pérez, A., Doménech, A., Al-Resayes, S. I. & Corma, A. Gold redox catalytic cycles for the oxidative coupling of alkynes. ACS Catal. 2, 121–126 (2012) .

Hopkinson, M. N., Ross, J. E., Giuffredi, G. T., Gee, A. D. & Gouverneur, V. Gold-catalysed cascade cyclization-oxidative alkynylation of allenoates. Org. Lett. 12, 4904–4907 (2010) .

Liu, L.-P., Xu, B., Mashuta, M. S. & Hammond, G. B. Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalysed cyclizations. J. Am. Chem. Soc. 130, 17642–17643 (2008) .

Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalysed oxidative coupling of arylsilanes and arenes: origin of selectivity and improved precatalyst. J. Am. Chem. Soc. 136, 254–264 (2014) .

Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis 186Elsevier Academic Press (2005) .

Berners–Price, S. J. & Sadler, P. J. Gold(I) complexes with bidentate tertiary phosphine ligands: formation of annular vs. tetrahedral chelated complexes. Inorg. Chem. 25, 3822–3827 (1986) .

Mirabelli, C. K. et al. Antitumor activity of bis(diphenylphosphino)alkanes, their gold(I) coordination complexes, and related compounds. J. Med. Chem. 30, 2181–2190 (1987) .

Li, D., Hang, X., Che, C.-M., Lo, W.-C. & Peng, S.-M. Luminescent gold(I) acetylide complexes. Photophysical and photoredox properties and crystal structure of [{Au(C≡CPh)}2(μ-PPh2CH2CH2PPh2)]. J. Chem. Soc. Dalton Trans. 19, 2929–2932 (1993) .

Brandys, M.-C., Jennings, M. C. & Puddephatt, R. J. Luminescent gold(I) macrocycles with diphosphine and 4,4-bipyridyl ligands. J. Chem. Soc. Dalton Trans. 24, 4601–4606 (2000) .

Fackler, J. & John, P. Metal–metal bond formation in the oxidative addition to dinuclear gold(I) species. Implications from dinuclear and trinuclear gold chemistry for the oxidative addition process generally. Polyhedron 16, 1–17 (1997) .

Fackler, J. & John, P. Forty-five years of chemical discovery including a golden quarter-century. Inorg. Chem. 41, 6959–6972 (2002) .

Doménech, A., Leyva-Pérez, A., Al-Resayes, S. I. & Corma, A. Electrochemical monitoring of the oxidative coupling of alkynes catalysed by triphenylphosphine gold complexes. Electrochem. Commun. 19, 145–148 (2012) .

Cui, L., Zhang, G. & Zhang, L. Homogeneous gold-catalysed efficient oxidative dimerization of propargylic acetates. Bioorg. Med. Chem. Lett. 19, 3884–3887 (2009) .

Zhang, G., Peng, Y., Cui, L. & Zhang, L. Gold-catalysed homogeneous oxidative cross-coupling reactions. Angew. Chem. Int. Ed. 48, 3112–3115 (2009) .

Hopkinson, M. N. et al. Gold-catalysed intramolecular oxidative cross-coupling of nonactivated arenes. Chem. Eur. J. 16, 4739–4743 (2010) .

Zhang, G., Cui, L., Wang, Y. & Zhang, L. Homogeneous gold-catalysed oxidative carboheterofunctionalization of alkenes. J. Am. Chem. Soc. 132, 1474–1475 (2010) .

Wolf, W. J., Winston, M. S. & Toste, F. D. Exceptionally fast carbon–carbon bond reductive elimination from gold(III). Nat. Chem. 6, 159–164 (2014) .

Hashmi, A. S. K. Homogeneous gold catalysis beyond assumptions and proposals-characterized intermediates. Angew. Chem. Int. Ed. 49, 5232–5241 (2010) .

Hofer, M. & Nevado, C. Unexpected outcomes of the oxidation of (pentafluorophenyl)triphenylphosphanegold(I). Eur. J. Inorg. Chem. 9, 1338–1341 (2012) .

Hashmi, A. S. K. et al. Dual gold catalysis: σ,π-propyne acetylide and hydroxyl-bridged digold complexes as easy-to-prepare and easy-to-handle precatalysts. Chemistry 19, 1058–1065 (2013) .

Méndez, L. A., Jiménez, J., Cerrada, E., Mohr, F. & Laguna, M. A Family of alkynylgold(III) complexes [AuI(μ-{CH2}2PPh2)2AuIII(C≡CR)2] (R=Ph, tBu, Me3Si): facile and reversible comproportionation of gold(I)/gold(III) to digold(II). J. Am. Chem. Soc. 127, 852–853 (2005) .

Au, V. K.-M., Wong, K. M.-C., Zhu, N. & Yam, V. W.-W. Luminescent cyclometalated dialkynylgold(III) complexes of 2-phenylpyridine-type derivatives with readily tunable emission properties. Chem. Eur. J. 17, 130–142 (2011) .

Schwerdtfeger, P. Relativistic effects in gold chemistry. 2. The stability of complex halides of gold(III). J. Am. Chem. Soc. 111, 7261–7262 (1989) .

Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007) .

Leyva–Pérez, A. & Corma, A. Similarities and differences between Gold, Platinum and Mercury “relativistic” triad in catalysis. Angew. Chem. Int. Ed. 51, 614–635 (2011) .

Leyva, A., Zhang, X. & Corma, A. Chemoselective hydroboration of alkynes vs. alkenes over gold catalysts. Chem. Commun. 33, 4897–5044 (2009) .

Usón, R., Laguna, A. & Vicente, J. Novel anionic gold(I) and gold(III) organocomplexes. J. Organomet. Chem. 131, 471–475 (1977) .

Khairul, W. M. et al. Transition metal alkynyl complexes by transmetallation from Au(C≡CAr)(PPh3) (Ar=C6H5 or C6H4Me-4). Dalton Trans. 4, 610–620 (2009) .

Chen, Y., Chen, M. & Liu, Y. Gold-catalysed cyclization of 1,6-diyne-4-en-3-ols: stannyl transfer from 2-tributylstannylfuran through Au/Sn transmetallation. Angew. Chem. Int. Ed. 51, 6181–6186 (2012) .

Hofer, M., Gomez-Bengoa, E. & Nevado, C. A Neutral gold(III)−boron transmetallation. Organometallics 33, 1328–1332 (2014) .

Yin, W., He, C., Chen, M., Zhang, H. & Lei, A. Nickel-catalysed oxidative coupling reactions of two different terminal alkynes using O2 as the oxidant at room temperature: facile syntheses of unsymmetric 1,3–diynes. Org. Lett. 11, 709–712 (2009) .

Balaraman, K. & Kesavan, V. Efficient copper(II) acetate catalysed homo and heterocoupling of terminal alkynes at ambient conditions. Synthesis 20, 3461–3466 (2010) .

Xiao, R., Yao, R. & Cai, M. Practical oxidative homo- and heterocoupling of terminal alkynes catalysed by immobilized copper in MCM-41. Eur. J. Org. Chem. 22, 4178–4184 (2012) .

Navale, B. S. & Bhat, R. G. Copper(I) iodide-DMAP catalysed homo- and heterocoupling of terminal alkynes. RSC Adv. 3, 5220–5226 (2013) .

Ohashi, K. et al. Indonesian medicinal plants. XXV.1) Cancer cell invasion inhibitory effects of chemical constituents in the parasitic plant scurrula atropurpurea (Loranthaceae). Chem. Pharm. Bull. 51, 343–345 (2003) .

Xu, Z., Byun, H.-S. & Bittman, R. Synthesis of photopolymerizable long-chain conjugated diacetylenic acids and alcohols from butadiyne synthons. J. Org. Chem. 56, 7183–7186 (1991) .

Lee, S., Lee, T., Lee, Y. M., Kim, D. & Kim, S. Solid-phase library synthesis of polyynes similar to natural products. Angew. Chem. Int. Ed. 46, 8422–8425 (2007) .

Liu, J., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009) .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem