Mostrar el registro sencillo del ítem
dc.contributor.author | Erol, Zeynep Neslihan | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | Arslanoglu, Yasin | es_ES |
dc.contributor.author | Hamuryudan, Esin | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2016-05-16T07:38:07Z | |
dc.date.available | 2016-05-16T07:38:07Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 2046-2069 | |
dc.identifier.uri | http://hdl.handle.net/10251/64099 | |
dc.description.abstract | Zn2+ and Co2+ metallated phthalocyanines having four calixpyrrole units have been prepared from a calixpyrrole phthalonitrile using Zn2+ or Co2+ salts as templates of a phthalocyanine macrocycle. Hostguest complexes between the anions (Cl-, F- and H2PO4-) and the calixpyrrole units are formed as evidenced by NMR, the shift in the reduction potential of the calixpyrrole units by cyclic voltammetry and by observation of two straight lines in the plot of the conductivity versus the amount of halide. While halides do not form complexes with Zn2+ or Co2+ ions of the phthalocyanine core in the ground state as evidenced by the lack of variation in the position of the Q-band in optical spectroscopy, upon 355 nm excitation, the apical metal-halide complex should be formed as a transient as evidenced by the comparison of the transient absorption spectra in the presence and absence of halides. | es_ES |
dc.description.sponsorship | Financial support from the Ministry of Science and Innovation of Spain, (CTQ 2012-2013) is gratefully acknowledged. P.A. also thanks the Spanish Ministry of Science and Innovation by a Ramon y Cajal research associate contract (RYC-2012-10702) and the UPV for the grant PAID-06-12. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC ADVANCES | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ZINC PHTHALOCYANINES | es_ES |
dc.subject | CHARGE SEPARATION | es_ES |
dc.subject | PHOTOCHEMISTRY | es_ES |
dc.subject | PORPHYRINS | es_ES |
dc.subject | COMPLEXES | es_ES |
dc.subject | XANTHONE | es_ES |
dc.subject | ELECTROCHEMISTRY | es_ES |
dc.subject | CYCLODEXTRIN | es_ES |
dc.subject | SUBSTITUENTS | es_ES |
dc.subject | FULLERENES | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Synthesis and photophysical properties of phthalocyanines having calixpyrrole units | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c5ra05830a | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2012-10702/ES/RYC-2012-10702/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Erol, ZN.; Atienzar Corvillo, PE.; Arslanoglu, Y.; Hamuryudan, E.; García Gómez, H. (2015). Synthesis and photophysical properties of phthalocyanines having calixpyrrole units. RSC ADVANCES. 5(69):55901-55908. https://doi.org/10.1039/c5ra05830a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c5ra05830a | es_ES |
dc.description.upvformatpinicio | 55901 | es_ES |
dc.description.upvformatpfin | 55908 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 69 | es_ES |
dc.relation.senia | 305231 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z | es_ES |
dc.description.references | Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139 | es_ES |
dc.description.references | Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498 | es_ES |
dc.description.references | De la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (2004). Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), 3723-3750. doi:10.1021/cr030206t | es_ES |
dc.description.references | Liddell, P. A., Kuciauskas, D., Sumida, J. P., Nash, B., Nguyen, D., Moore, A. L., … Gust, D. (1997). Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad. Journal of the American Chemical Society, 119(6), 1400-1405. doi:10.1021/ja9631054 | es_ES |
dc.description.references | Cid, J.-J., García-Iglesias, M., Yum, J.-H., Forneli, A., Albero, J., Martínez-Ferrero, E., … Torres, T. (2009). Structure-Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells. Chemistry - A European Journal, 15(20), 5130-5137. doi:10.1002/chem.200801778 | es_ES |
dc.description.references | Morimune, T., Kajii, H., & Ohmori, Y. (2006). Photoresponse Properties of a High-Speed Organic Photodetector Based on Copper–Phthalocyanine Under Red Light Illumination. IEEE Photonics Technology Letters, 18(24), 2662-2664. doi:10.1109/lpt.2006.887786 | es_ES |
dc.description.references | Moore, T. A., Gust, D., Mathis, P., Mialocq, J.-C., Chachaty, C., Bensasson, R. V., … Moore, A. L. (1984). Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature, 307(5952), 630-632. doi:10.1038/307630a0 | es_ES |
dc.description.references | Sürgün, S., Arslanoğlu, Y., & Hamuryudan, E. (2014). Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dyes and Pigments, 100, 32-40. doi:10.1016/j.dyepig.2013.07.027 | es_ES |
dc.description.references | Adriaenssens, L., Estarellas, C., Vargas Jentzsch, A., Martinez Belmonte, M., Matile, S., & Ballester, P. (2013). Quantification of Nitrate−π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. Journal of the American Chemical Society, 135(22), 8324-8330. doi:10.1021/ja4021793 | es_ES |
dc.description.references | Sessler, J. L., Kral, V., Shishkanova, T. V., & Gale, P. A. (2002). Cytosine substituted calix[4]pyrroles: Neutral receptors for 5’-guanosine monophosphate. Proceedings of the National Academy of Sciences, 99(8), 4848-4853. doi:10.1073/pnas.062633799 | es_ES |
dc.description.references | Lee, C.-H., Na, H.-K., Yoon, D.-W., Won, D.-H., Cho, W.-S., Lynch, V. M., … Sessler, J. L. (2003). Single Side Strapping: A New Approach to Fine Tuning the Anion Recognition Properties of Calix[4]pyrroles. Journal of the American Chemical Society, 125(24), 7301-7306. doi:10.1021/ja029175u | es_ES |
dc.description.references | Young, J. G., & Onyebuagu, W. (1990). Synthesis and characterization of di-disubstituted phthalocyanines. The Journal of Organic Chemistry, 55(7), 2155-2159. doi:10.1021/jo00294a032 | es_ES |
dc.description.references | Aydogan, A., & Akar, A. (2012). Tri- and Pentacalix[4]pyrroles: Synthesis, Characterization and Their Use in the Extraction of Halide Salts. Chemistry - A European Journal, 18(7), 1999-2005. doi:10.1002/chem.201101605 | es_ES |
dc.description.references | Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i | es_ES |
dc.description.references | D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s): Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688 | es_ES |
dc.description.references | Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 251(13-14), 1707-1722. doi:10.1016/j.ccr.2006.11.011 | es_ES |
dc.description.references | Owens, J. W., Smith, R., Robinson, R., & Robins, M. (1998). Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorganica Chimica Acta, 279(2), 226-231. doi:10.1016/s0020-1693(98)00137-6 | es_ES |
dc.description.references | Durmuş, M., & Nyokong, T. (2008). Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(4), 1170-1177. doi:10.1016/j.saa.2007.06.029 | es_ES |
dc.description.references | Idowu, M., & Nyokong, T. (2009). Photophysicochemical and fluorescence quenching studies of tetra- and octa-carboxy substituted silicon and germanium phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 204(1), 63-68. doi:10.1016/j.jphotochem.2009.02.002 | es_ES |
dc.description.references | J. C. Scaiano , CRC handbook of organic photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, Fla, 1989 | es_ES |
dc.description.references | J. Mack and M. J.Stillman, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, Amsterdam, 2003, pp. 43–116, 10.1016/b978-0-08-092390-1.50008-4 | es_ES |
dc.description.references | Bohne, C. (2014). Supramolecular dynamics. Chem. Soc. Rev., 43(12), 4037-4050. doi:10.1039/c3cs60352k | es_ES |
dc.description.references | Barra, M., Bohne, C., & Scaiano, J. C. (1991). STUDY OF XANTHONE-CYCLODEXTRIN INCLUSION COMPLEXES IN THE SOLID STATE USING TIME-RESOLVED DIFFUSE REFLECTANCE-LASER FLASH PHOTOLYSIS. Photochemistry and Photobiology, 54(1), 1-5. doi:10.1111/j.1751-1097.1991.tb01977.x | es_ES |
dc.description.references | Barra, M. (1997). Deuterium Isotope Effect on the Complexation of β-Cyclodextrin and Triplet Xanthone in Aqueous Solution. Supramolecular Chemistry, 8(4), 263-266. doi:10.1080/10610279708034944 | es_ES |
dc.description.references | Scaiano, J. C. (1980). Solvent effects in the photochemistry of xanthone. Journal of the American Chemical Society, 102(26), 7747-7753. doi:10.1021/ja00546a018 | es_ES |
dc.description.references | Ogunsipe, A., & Nyokong, T. (2004). Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 689(1-2), 89-97. doi:10.1016/j.molstruc.2003.10.024 | es_ES |
dc.description.references | D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002 | es_ES |