- -

Synthesis and photophysical properties of phthalocyanines having calixpyrrole units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and photophysical properties of phthalocyanines having calixpyrrole units

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Erol, Zeynep Neslihan es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author Arslanoglu, Yasin es_ES
dc.contributor.author Hamuryudan, Esin es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-05-16T07:38:07Z
dc.date.available 2016-05-16T07:38:07Z
dc.date.issued 2015
dc.identifier.issn 2046-2069
dc.identifier.uri http://hdl.handle.net/10251/64099
dc.description.abstract Zn2+ and Co2+ metallated phthalocyanines having four calixpyrrole units have been prepared from a calixpyrrole phthalonitrile using Zn2+ or Co2+ salts as templates of a phthalocyanine macrocycle. Hostguest complexes between the anions (Cl-, F- and H2PO4-) and the calixpyrrole units are formed as evidenced by NMR, the shift in the reduction potential of the calixpyrrole units by cyclic voltammetry and by observation of two straight lines in the plot of the conductivity versus the amount of halide. While halides do not form complexes with Zn2+ or Co2+ ions of the phthalocyanine core in the ground state as evidenced by the lack of variation in the position of the Q-band in optical spectroscopy, upon 355 nm excitation, the apical metal-halide complex should be formed as a transient as evidenced by the comparison of the transient absorption spectra in the presence and absence of halides. es_ES
dc.description.sponsorship Financial support from the Ministry of Science and Innovation of Spain, (CTQ 2012-2013) is gratefully acknowledged. P.A. also thanks the Spanish Ministry of Science and Innovation by a Ramon y Cajal research associate contract (RYC-2012-10702) and the UPV for the grant PAID-06-12. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof RSC ADVANCES es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ZINC PHTHALOCYANINES es_ES
dc.subject CHARGE SEPARATION es_ES
dc.subject PHOTOCHEMISTRY es_ES
dc.subject PORPHYRINS es_ES
dc.subject COMPLEXES es_ES
dc.subject XANTHONE es_ES
dc.subject ELECTROCHEMISTRY es_ES
dc.subject CYCLODEXTRIN es_ES
dc.subject SUBSTITUENTS es_ES
dc.subject FULLERENES es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Synthesis and photophysical properties of phthalocyanines having calixpyrrole units es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5ra05830a
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2012-10702/ES/RYC-2012-10702/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Erol, ZN.; Atienzar Corvillo, PE.; Arslanoglu, Y.; Hamuryudan, E.; García Gómez, H. (2015). Synthesis and photophysical properties of phthalocyanines having calixpyrrole units. RSC ADVANCES. 5(69):55901-55908. https://doi.org/10.1039/c5ra05830a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c5ra05830a es_ES
dc.description.upvformatpinicio 55901 es_ES
dc.description.upvformatpfin 55908 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 69 es_ES
dc.relation.senia 305231 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z es_ES
dc.description.references Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139 es_ES
dc.description.references Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498 es_ES
dc.description.references De la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (2004). Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), 3723-3750. doi:10.1021/cr030206t es_ES
dc.description.references Liddell, P. A., Kuciauskas, D., Sumida, J. P., Nash, B., Nguyen, D., Moore, A. L., … Gust, D. (1997). Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad. Journal of the American Chemical Society, 119(6), 1400-1405. doi:10.1021/ja9631054 es_ES
dc.description.references Cid, J.-J., García-Iglesias, M., Yum, J.-H., Forneli, A., Albero, J., Martínez-Ferrero, E., … Torres, T. (2009). Structure-Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells. Chemistry - A European Journal, 15(20), 5130-5137. doi:10.1002/chem.200801778 es_ES
dc.description.references Morimune, T., Kajii, H., & Ohmori, Y. (2006). Photoresponse Properties of a High-Speed Organic Photodetector Based on Copper–Phthalocyanine Under Red Light Illumination. IEEE Photonics Technology Letters, 18(24), 2662-2664. doi:10.1109/lpt.2006.887786 es_ES
dc.description.references Moore, T. A., Gust, D., Mathis, P., Mialocq, J.-C., Chachaty, C., Bensasson, R. V., … Moore, A. L. (1984). Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature, 307(5952), 630-632. doi:10.1038/307630a0 es_ES
dc.description.references Sürgün, S., Arslanoğlu, Y., & Hamuryudan, E. (2014). Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dyes and Pigments, 100, 32-40. doi:10.1016/j.dyepig.2013.07.027 es_ES
dc.description.references Adriaenssens, L., Estarellas, C., Vargas Jentzsch, A., Martinez Belmonte, M., Matile, S., & Ballester, P. (2013). Quantification of Nitrate−π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. Journal of the American Chemical Society, 135(22), 8324-8330. doi:10.1021/ja4021793 es_ES
dc.description.references Sessler, J. L., Kral, V., Shishkanova, T. V., & Gale, P. A. (2002). Cytosine substituted calix[4]pyrroles: Neutral receptors for 5’-guanosine monophosphate. Proceedings of the National Academy of Sciences, 99(8), 4848-4853. doi:10.1073/pnas.062633799 es_ES
dc.description.references Lee, C.-H., Na, H.-K., Yoon, D.-W., Won, D.-H., Cho, W.-S., Lynch, V. M., … Sessler, J. L. (2003). Single Side Strapping:  A New Approach to Fine Tuning the Anion Recognition Properties of Calix[4]pyrroles. Journal of the American Chemical Society, 125(24), 7301-7306. doi:10.1021/ja029175u es_ES
dc.description.references Young, J. G., & Onyebuagu, W. (1990). Synthesis and characterization of di-disubstituted phthalocyanines. The Journal of Organic Chemistry, 55(7), 2155-2159. doi:10.1021/jo00294a032 es_ES
dc.description.references Aydogan, A., & Akar, A. (2012). Tri- and Pentacalix[4]pyrroles: Synthesis, Characterization and Their Use in the Extraction of Halide Salts. Chemistry - A European Journal, 18(7), 1999-2005. doi:10.1002/chem.201101605 es_ES
dc.description.references Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i es_ES
dc.description.references D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688 es_ES
dc.description.references Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 251(13-14), 1707-1722. doi:10.1016/j.ccr.2006.11.011 es_ES
dc.description.references Owens, J. W., Smith, R., Robinson, R., & Robins, M. (1998). Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorganica Chimica Acta, 279(2), 226-231. doi:10.1016/s0020-1693(98)00137-6 es_ES
dc.description.references Durmuş, M., & Nyokong, T. (2008). Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(4), 1170-1177. doi:10.1016/j.saa.2007.06.029 es_ES
dc.description.references Idowu, M., & Nyokong, T. (2009). Photophysicochemical and fluorescence quenching studies of tetra- and octa-carboxy substituted silicon and germanium phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 204(1), 63-68. doi:10.1016/j.jphotochem.2009.02.002 es_ES
dc.description.references J. C. Scaiano , CRC handbook of organic photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, Fla, 1989 es_ES
dc.description.references J. Mack and M. J.Stillman, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, Amsterdam, 2003, pp. 43–116, 10.1016/b978-0-08-092390-1.50008-4 es_ES
dc.description.references Bohne, C. (2014). Supramolecular dynamics. Chem. Soc. Rev., 43(12), 4037-4050. doi:10.1039/c3cs60352k es_ES
dc.description.references Barra, M., Bohne, C., & Scaiano, J. C. (1991). STUDY OF XANTHONE-CYCLODEXTRIN INCLUSION COMPLEXES IN THE SOLID STATE USING TIME-RESOLVED DIFFUSE REFLECTANCE-LASER FLASH PHOTOLYSIS. Photochemistry and Photobiology, 54(1), 1-5. doi:10.1111/j.1751-1097.1991.tb01977.x es_ES
dc.description.references Barra, M. (1997). Deuterium Isotope Effect on the Complexation of β-Cyclodextrin and Triplet Xanthone in Aqueous Solution. Supramolecular Chemistry, 8(4), 263-266. doi:10.1080/10610279708034944 es_ES
dc.description.references Scaiano, J. C. (1980). Solvent effects in the photochemistry of xanthone. Journal of the American Chemical Society, 102(26), 7747-7753. doi:10.1021/ja00546a018 es_ES
dc.description.references Ogunsipe, A., & Nyokong, T. (2004). Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 689(1-2), 89-97. doi:10.1016/j.molstruc.2003.10.024 es_ES
dc.description.references D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem