- -

Synthesis and photophysical properties of phthalocyanines having calixpyrrole units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and photophysical properties of phthalocyanines having calixpyrrole units

Mostrar el registro completo del ítem

Erol, ZN.; Atienzar Corvillo, PE.; Arslanoglu, Y.; Hamuryudan, E.; García Gómez, H. (2015). Synthesis and photophysical properties of phthalocyanines having calixpyrrole units. RSC ADVANCES. 5(69):55901-55908. https://doi.org/10.1039/c5ra05830a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64099

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and photophysical properties of phthalocyanines having calixpyrrole units
Autor: Erol, Zeynep Neslihan Atienzar Corvillo, Pedro Enrique Arslanoglu, Yasin Hamuryudan, Esin García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Zn2+ and Co2+ metallated phthalocyanines having four calixpyrrole units have been prepared from a calixpyrrole phthalonitrile using Zn2+ or Co2+ salts as templates of a phthalocyanine macrocycle. Hostguest complexes between ...[+]
Palabras clave: ZINC PHTHALOCYANINES , CHARGE SEPARATION , PHOTOCHEMISTRY , PORPHYRINS , COMPLEXES , XANTHONE , ELECTROCHEMISTRY , CYCLODEXTRIN , SUBSTITUENTS , FULLERENES
Derechos de uso: Reserva de todos los derechos
Fuente:
RSC ADVANCES. (issn: 2046-2069 )
DOI: 10.1039/c5ra05830a
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c5ra05830a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RYC-2012-10702/ES/RYC-2012-10702/
info:eu-repo/grantAgreement/UPV//PAID-06-12/
Agradecimientos:
Financial support from the Ministry of Science and Innovation of Spain, (CTQ 2012-2013) is gratefully acknowledged. P.A. also thanks the Spanish Ministry of Science and Innovation by a Ramon y Cajal research associate ...[+]
Tipo: Artículo

References

Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z

Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139

Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498 [+]
Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z

Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139

Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498

De la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (2004). Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), 3723-3750. doi:10.1021/cr030206t

Liddell, P. A., Kuciauskas, D., Sumida, J. P., Nash, B., Nguyen, D., Moore, A. L., … Gust, D. (1997). Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad. Journal of the American Chemical Society, 119(6), 1400-1405. doi:10.1021/ja9631054

Cid, J.-J., García-Iglesias, M., Yum, J.-H., Forneli, A., Albero, J., Martínez-Ferrero, E., … Torres, T. (2009). Structure-Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells. Chemistry - A European Journal, 15(20), 5130-5137. doi:10.1002/chem.200801778

Morimune, T., Kajii, H., & Ohmori, Y. (2006). Photoresponse Properties of a High-Speed Organic Photodetector Based on Copper–Phthalocyanine Under Red Light Illumination. IEEE Photonics Technology Letters, 18(24), 2662-2664. doi:10.1109/lpt.2006.887786

Moore, T. A., Gust, D., Mathis, P., Mialocq, J.-C., Chachaty, C., Bensasson, R. V., … Moore, A. L. (1984). Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature, 307(5952), 630-632. doi:10.1038/307630a0

Sürgün, S., Arslanoğlu, Y., & Hamuryudan, E. (2014). Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dyes and Pigments, 100, 32-40. doi:10.1016/j.dyepig.2013.07.027

Adriaenssens, L., Estarellas, C., Vargas Jentzsch, A., Martinez Belmonte, M., Matile, S., & Ballester, P. (2013). Quantification of Nitrate−π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. Journal of the American Chemical Society, 135(22), 8324-8330. doi:10.1021/ja4021793

Sessler, J. L., Kral, V., Shishkanova, T. V., & Gale, P. A. (2002). Cytosine substituted calix[4]pyrroles: Neutral receptors for 5’-guanosine monophosphate. Proceedings of the National Academy of Sciences, 99(8), 4848-4853. doi:10.1073/pnas.062633799

Lee, C.-H., Na, H.-K., Yoon, D.-W., Won, D.-H., Cho, W.-S., Lynch, V. M., … Sessler, J. L. (2003). Single Side Strapping:  A New Approach to Fine Tuning the Anion Recognition Properties of Calix[4]pyrroles. Journal of the American Chemical Society, 125(24), 7301-7306. doi:10.1021/ja029175u

Young, J. G., & Onyebuagu, W. (1990). Synthesis and characterization of di-disubstituted phthalocyanines. The Journal of Organic Chemistry, 55(7), 2155-2159. doi:10.1021/jo00294a032

Aydogan, A., & Akar, A. (2012). Tri- and Pentacalix[4]pyrroles: Synthesis, Characterization and Their Use in the Extraction of Halide Salts. Chemistry - A European Journal, 18(7), 1999-2005. doi:10.1002/chem.201101605

Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i

D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688

Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 251(13-14), 1707-1722. doi:10.1016/j.ccr.2006.11.011

Owens, J. W., Smith, R., Robinson, R., & Robins, M. (1998). Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorganica Chimica Acta, 279(2), 226-231. doi:10.1016/s0020-1693(98)00137-6

Durmuş, M., & Nyokong, T. (2008). Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(4), 1170-1177. doi:10.1016/j.saa.2007.06.029

Idowu, M., & Nyokong, T. (2009). Photophysicochemical and fluorescence quenching studies of tetra- and octa-carboxy substituted silicon and germanium phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 204(1), 63-68. doi:10.1016/j.jphotochem.2009.02.002

J. C. Scaiano , CRC handbook of organic photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, Fla, 1989

J. Mack and M. J.Stillman, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, Amsterdam, 2003, pp. 43–116, 10.1016/b978-0-08-092390-1.50008-4

Bohne, C. (2014). Supramolecular dynamics. Chem. Soc. Rev., 43(12), 4037-4050. doi:10.1039/c3cs60352k

Barra, M., Bohne, C., & Scaiano, J. C. (1991). STUDY OF XANTHONE-CYCLODEXTRIN INCLUSION COMPLEXES IN THE SOLID STATE USING TIME-RESOLVED DIFFUSE REFLECTANCE-LASER FLASH PHOTOLYSIS. Photochemistry and Photobiology, 54(1), 1-5. doi:10.1111/j.1751-1097.1991.tb01977.x

Barra, M. (1997). Deuterium Isotope Effect on the Complexation of β-Cyclodextrin and Triplet Xanthone in Aqueous Solution. Supramolecular Chemistry, 8(4), 263-266. doi:10.1080/10610279708034944

Scaiano, J. C. (1980). Solvent effects in the photochemistry of xanthone. Journal of the American Chemical Society, 102(26), 7747-7753. doi:10.1021/ja00546a018

Ogunsipe, A., & Nyokong, T. (2004). Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 689(1-2), 89-97. doi:10.1016/j.molstruc.2003.10.024

D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem