Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z
Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139
Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498
[+]
Bottari, G., de la Torre, G., Guldi, D. M., & Torres, T. (2010). Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews, 110(11), 6768-6816. doi:10.1021/cr900254z
Claessens, C. G., Hahn, U., & Torres, T. (2008). Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8(2), 75-97. doi:10.1002/tcr.20139
Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., & Rowan, A. E. (2006). Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. Advanced Materials, 18(10), 1251-1266. doi:10.1002/adma.200502498
De la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (2004). Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), 3723-3750. doi:10.1021/cr030206t
Liddell, P. A., Kuciauskas, D., Sumida, J. P., Nash, B., Nguyen, D., Moore, A. L., … Gust, D. (1997). Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad. Journal of the American Chemical Society, 119(6), 1400-1405. doi:10.1021/ja9631054
Cid, J.-J., García-Iglesias, M., Yum, J.-H., Forneli, A., Albero, J., Martínez-Ferrero, E., … Torres, T. (2009). Structure-Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells. Chemistry - A European Journal, 15(20), 5130-5137. doi:10.1002/chem.200801778
Morimune, T., Kajii, H., & Ohmori, Y. (2006). Photoresponse Properties of a High-Speed Organic Photodetector Based on Copper–Phthalocyanine Under Red Light Illumination. IEEE Photonics Technology Letters, 18(24), 2662-2664. doi:10.1109/lpt.2006.887786
Moore, T. A., Gust, D., Mathis, P., Mialocq, J.-C., Chachaty, C., Bensasson, R. V., … Moore, A. L. (1984). Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature, 307(5952), 630-632. doi:10.1038/307630a0
Sürgün, S., Arslanoğlu, Y., & Hamuryudan, E. (2014). Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dyes and Pigments, 100, 32-40. doi:10.1016/j.dyepig.2013.07.027
Adriaenssens, L., Estarellas, C., Vargas Jentzsch, A., Martinez Belmonte, M., Matile, S., & Ballester, P. (2013). Quantification of Nitrate−π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. Journal of the American Chemical Society, 135(22), 8324-8330. doi:10.1021/ja4021793
Sessler, J. L., Kral, V., Shishkanova, T. V., & Gale, P. A. (2002). Cytosine substituted calix[4]pyrroles: Neutral receptors for 5’-guanosine monophosphate. Proceedings of the National Academy of Sciences, 99(8), 4848-4853. doi:10.1073/pnas.062633799
Lee, C.-H., Na, H.-K., Yoon, D.-W., Won, D.-H., Cho, W.-S., Lynch, V. M., … Sessler, J. L. (2003). Single Side Strapping: A New Approach to Fine Tuning the Anion Recognition Properties of Calix[4]pyrroles. Journal of the American Chemical Society, 125(24), 7301-7306. doi:10.1021/ja029175u
Young, J. G., & Onyebuagu, W. (1990). Synthesis and characterization of di-disubstituted phthalocyanines. The Journal of Organic Chemistry, 55(7), 2155-2159. doi:10.1021/jo00294a032
Aydogan, A., & Akar, A. (2012). Tri- and Pentacalix[4]pyrroles: Synthesis, Characterization and Their Use in the Extraction of Halide Salts. Chemistry - A European Journal, 18(7), 1999-2005. doi:10.1002/chem.201101605
Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i
D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s): Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688
Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 251(13-14), 1707-1722. doi:10.1016/j.ccr.2006.11.011
Owens, J. W., Smith, R., Robinson, R., & Robins, M. (1998). Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorganica Chimica Acta, 279(2), 226-231. doi:10.1016/s0020-1693(98)00137-6
Durmuş, M., & Nyokong, T. (2008). Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(4), 1170-1177. doi:10.1016/j.saa.2007.06.029
Idowu, M., & Nyokong, T. (2009). Photophysicochemical and fluorescence quenching studies of tetra- and octa-carboxy substituted silicon and germanium phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 204(1), 63-68. doi:10.1016/j.jphotochem.2009.02.002
J. C. Scaiano , CRC handbook of organic photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, Fla, 1989
J. Mack and M. J.Stillman, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, Amsterdam, 2003, pp. 43–116, 10.1016/b978-0-08-092390-1.50008-4
Bohne, C. (2014). Supramolecular dynamics. Chem. Soc. Rev., 43(12), 4037-4050. doi:10.1039/c3cs60352k
Barra, M., Bohne, C., & Scaiano, J. C. (1991). STUDY OF XANTHONE-CYCLODEXTRIN INCLUSION COMPLEXES IN THE SOLID STATE USING TIME-RESOLVED DIFFUSE REFLECTANCE-LASER FLASH PHOTOLYSIS. Photochemistry and Photobiology, 54(1), 1-5. doi:10.1111/j.1751-1097.1991.tb01977.x
Barra, M. (1997). Deuterium Isotope Effect on the Complexation of β-Cyclodextrin and Triplet Xanthone in Aqueous Solution. Supramolecular Chemistry, 8(4), 263-266. doi:10.1080/10610279708034944
Scaiano, J. C. (1980). Solvent effects in the photochemistry of xanthone. Journal of the American Chemical Society, 102(26), 7747-7753. doi:10.1021/ja00546a018
Ogunsipe, A., & Nyokong, T. (2004). Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 689(1-2), 89-97. doi:10.1016/j.molstruc.2003.10.024
D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002
[-]