- -

Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress

Mostrar el registro completo del ítem

Apostolova, N.; Rovira-Llopis, S.; Baldovi, HG.; Navalón Oltra, S.; Asiri, AM.; Victor, VM.; García Gómez, H.... (2015). Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress. RSC Advances. 5(97):79423-79432. https://doi.org/10.1039/c5ra12794g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64100

Ficheros en el ítem

Metadatos del ítem

Título: Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress
Autor: Apostolova, Nadezda Rovira-Llopis, Susana Baldovi, Herme G. Navalón Oltra, Sergio Asiri, Abdullah M. Victor, Victor M. García Gómez, Hermenegildo Herance Camacho, Jose Raul
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Ceria nanoparticles with rhodamine B groups covalently attached on their surface (RhB-CeNPs) were successfully prepared to simultaneously exhibit antioxidant activity and the ability to detect oxidant species. In order to ...[+]
Palabras clave: OXIDE NANOPARTICLES , NANOMEDICINE , CELLS , GOLD , PHOTODEGRADATION , LOCALIZATION , PERSPECTIVES , PROTECTION , DISEASES , THERAPY
Derechos de uso: Reserva de todos los derechos
Fuente:
RSC Advances. (issn: 2046-2069 )
DOI: 10.1039/c5ra12794g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c5ra12794g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CP13%2F00252/ES/CP13%2F00252/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/
info:eu-repo/grantAgreement/FISABIO//UGP-14-095/ES/Disfunción endotelial-mitocondrial, estrés de retículo y autofagia en la diabetes tipo 2: Implicaciones, fisiopatologías, clínicas y terapéuticas/
Agradecimientos:
The present work was supported by the grant CP13/00252, PI13/1025 from Carlos III Health Institute, and by the European Regional Development Fund (ERDF). In addition, this study was financed by the Spanish Ministry of ...[+]
Tipo: Artículo

References

Espinet, C., Gonzalo, H., Fleitas, C., Menal, M., & Egea, J. (2015). Oxidative Stress and Neurodegenerative Diseases: A Neurotrophic Approach. Current Drug Targets, 16(1), 20-30. doi:10.2174/1389450116666150107153233

Matsuo, M. (2004). Aging and Oxidative Stress Resistance in Human Fibroblasts. Journal of Clinical Biochemistry and Nutrition, 35(2), 63-70. doi:10.3164/jcbn.35.63

Sohal, R. S., & Weindruch, R. (1996). Oxidative Stress, Caloric Restriction, and Aging. Science, 273(5271), 59-63. doi:10.1126/science.273.5271.59 [+]
Espinet, C., Gonzalo, H., Fleitas, C., Menal, M., & Egea, J. (2015). Oxidative Stress and Neurodegenerative Diseases: A Neurotrophic Approach. Current Drug Targets, 16(1), 20-30. doi:10.2174/1389450116666150107153233

Matsuo, M. (2004). Aging and Oxidative Stress Resistance in Human Fibroblasts. Journal of Clinical Biochemistry and Nutrition, 35(2), 63-70. doi:10.3164/jcbn.35.63

Sohal, R. S., & Weindruch, R. (1996). Oxidative Stress, Caloric Restriction, and Aging. Science, 273(5271), 59-63. doi:10.1126/science.273.5271.59

Vitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature Reviews Endocrinology, 9(4), 228-240. doi:10.1038/nrendo.2013.29

Rocha, M., Apostolova, N., Herance, J. R., Rovira-Llopis, S., Hernandez-Mijares, A., & Victor, V. M. (2013). Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Medicinal Research Reviews, 34(1), 160-189. doi:10.1002/med.21285

Gutteridge, J. M. C., & Mitchell, J. (1999). Redox imbalance in the critically ill. British Medical Bulletin, 55(1), 49-75. doi:10.1258/0007142991902295

Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12(12), 931-947. doi:10.1038/nrd4002

Gutierrez-Merino, C., Lopez-Sanchez, C., Lagoa, R., K. Samhan-Arias, A., Bueno, C., & Garcia-Martinez, V. (2011). Neuroprotective Actions of Flavonoids. Current Medicinal Chemistry, 18(8), 1195-1212. doi:10.2174/092986711795029735

Martín, R., Menchón, C., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2010). Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress. ACS Nano, 4(11), 6957-6965. doi:10.1021/nn1019412

Raj, L., Ide, T., Gurkar, A. U., Foley, M., Schenone, M., Li, X., … Lee, S. W. (2011). Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 475(7355), 231-234. doi:10.1038/nature10167

Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(9), 2709-2729. doi:10.1016/j.bbagen.2014.05.017

Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443. doi:10.1056/nejmra0912273

Lohse, S. E., & Murphy, C. J. (2012). Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. Journal of the American Chemical Society, 134(38), 15607-15620. doi:10.1021/ja307589n

Lu, A.-H., Salabas, E. L., & Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 46(8), 1222-1244. doi:10.1002/anie.200602866

Menchón, C., Martín, R., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2012). Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 8(12), 1895-1903. doi:10.1002/smll.201102255

Sau, T. K., Rogach, A. L., Jäckel, F., Klar, T. A., & Feldmann, J. (2010). Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 22(16), 1805-1825. doi:10.1002/adma.200902557

Valtchev, V., & Tosheva, L. (2013). Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 113(8), 6734-6760. doi:10.1021/cr300439k

Della Rocca, J., Liu, D., & Lin, W. (2011). Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research, 44(10), 957-968. doi:10.1021/ar200028a

Lee, D.-E., Koo, H., Sun, I.-C., Ryu, J. H., Kim, K., & Kwon, I. C. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41(7), 2656-2672. doi:10.1039/c2cs15261d

Liu, J., Zheng, X., Yan, L., Zhou, L., Tian, G., Yin, W., … Zhao, Y. (2015). Bismuth Sulfide Nanorods as a Precision Nanomedicine for in Vivo Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 9(1), 696-707. doi:10.1021/nn506137n

Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine-Challenge and Perspectives. Angewandte Chemie International Edition, 48(5), 872-897. doi:10.1002/anie.200802585

Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211

Zholobak, N. M., Shcherbakov, A. B., Vitukova, E. O., Yegorova, A. V., Scripinets, Y. V., Leonenko, I. I., … Ivanov, V. K. (2014). Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Adv., 4(93), 51703-51710. doi:10.1039/c4ra08292c

Esch, F. (2005). Electron Localization Determines Defect Formation on Ceria Substrates. Science, 309(5735), 752-755. doi:10.1126/science.1111568

Turner, S., Lazar, S., Freitag, B., Egoavil, R., Verbeeck, J., Put, S., … Van Tendeloo, G. (2011). High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale, 3(8), 3385. doi:10.1039/c1nr10510h

Dahle, J., & Arai, Y. (2015). Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. International Journal of Environmental Research and Public Health, 12(2), 1253-1278. doi:10.3390/ijerph120201253

Maldotti, A., Molinari, A., Juárez, R., & Garcia, H. (2011). Photoinduced reactivity of Au–H intermediates in alcohol oxidation by gold nanoparticles supported on ceria. Chemical Science, 2(9), 1831. doi:10.1039/c1sc00283j

Estevez, A. Y., Pritchard, S., Harper, K., Aston, J. W., Lynch, A., Lucky, J. J., … Erlichman, J. S. (2011). Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 51(6), 1155-1163. doi:10.1016/j.freeradbiomed.2011.06.006

Gojova, A., Lee, J.-T., Jung, H. S., Guo, B., Barakat, A. I., & Kennedy, I. M. (2009). Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhalation Toxicology, 21(sup1), 123-130. doi:10.1080/08958370902942582

Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, (10), 1056. doi:10.1039/b615134e

NIU, J., AZFER, A., ROGERS, L., WANG, X., & KOLATTUKUDY, P. (2007). Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovascular Research, 73(3), 549-559. doi:10.1016/j.cardiores.2006.11.031

Tarnuzzer, R. W., Colon, J., Patil, S., & Seal, S. (2005). Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters, 5(12), 2573-2577. doi:10.1021/nl052024f

Banerjee, S. S., & Chen, D.-H. (2009). A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology, 20(18), 185103. doi:10.1088/0957-4484/20/18/185103

Das, M., Mishra, D., Dhak, P., Gupta, S., Maiti, T. K., Basak, A., & Pramanik, P. (2009). Biofunctionalized, Phosphonate-Grafted, Ultrasmall Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Multimodal Imaging. Small, 5(24), 2883-2893. doi:10.1002/smll.200901219

Shi, D., Ni, M., Luo, J., Akashi, M., Liu, X., & Chen, M. (2015). Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion. The Analyst, 140(4), 1306-1313. doi:10.1039/c4an01991a

Vlashi, E., Kelderhouse, L. E., Sturgis, J. E., & Low, P. S. (2013). Effect of Folate-Targeted Nanoparticle Size on Their Rates of Penetration into Solid Tumors. ACS Nano, 7(10), 8573-8582. doi:10.1021/nn402644g

Yuan, L., Lin, W., Zheng, K., He, L., & Huang, W. (2013). Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 42(2), 622-661. doi:10.1039/c2cs35313j

Mehrdad, A., & Hashemzadeh, R. (2010). Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17(1), 168-172. doi:10.1016/j.ultsonch.2009.07.003

Qu, P., Zhao, J., Shen, T., & Hidaka, H. (1998). TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. Journal of Molecular Catalysis A: Chemical, 129(2-3), 257-268. doi:10.1016/s1381-1169(97)00185-4

Zhou, X., Lan, J., Liu, G., Deng, K., Yang, Y., Nie, G., … Zhi, L. (2011). Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light. Angewandte Chemie International Edition, 51(1), 178-182. doi:10.1002/anie.201105028

Kwak, J. H., He, Y., Yoon, B., Koo, S., Yang, Z., Kang, E. J., … Kim, J. S. (2014). Synthesis of rhodamine-labelled dieckol: its unique intracellular localization and potent anti-inflammatory activity. Chem. Commun., 50(86), 13045-13048. doi:10.1039/c4cc04270k

Reisch, A., Didier, P., Richert, L., Oncul, S., Arntz, Y., Mély, Y., & Klymchenko, A. S. (2014). Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nature Communications, 5(1). doi:10.1038/ncomms5089

Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., Loetchutinat, C., & Mankhetkorn, S. (2003). Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. Journal of Biochemical and Biophysical Methods, 57(1), 1-16. doi:10.1016/s0165-022x(03)00032-0

Zakharova, G. V., Korobov, V. E., Shabalov, V. V., & Chibisov, A. K. (1983). Quenching of rhodamine-6G triplet state by inorganic ions in aqueous solutions. Journal of Applied Spectroscopy, 39(1), 765-768. doi:10.1007/bf00662817

Amstutz, V., Toghill, K. E., Powlesland, F., Vrubel, H., Comninellis, C., Hu, X., & Girault, H. H. (2014). Renewable hydrogen generation from a dual-circuit redox flow battery. Energy Environ. Sci., 7(7), 2350-2358. doi:10.1039/c4ee00098f

Seeram, N. P., Henning, S. M., Niu, Y., Lee, R., Scheuller, H. S., & Heber, D. (2006). Catechin and Caffeine Content of Green Tea Dietary Supplements and Correlation with Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 54(5), 1599-1603. doi:10.1021/jf052857r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem