Mostrar el registro sencillo del ítem
dc.contributor.author | Apostolova, Nadezda | es_ES |
dc.contributor.author | Rovira-Llopis, Susana | es_ES |
dc.contributor.author | Baldovi, Herme G. | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Asiri, Abdullah M. | es_ES |
dc.contributor.author | Victor, Victor M. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Herance Camacho, Jose Raul | es_ES |
dc.date.accessioned | 2016-05-16T07:48:29Z | |
dc.date.available | 2016-05-16T07:48:29Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 2046-2069 | |
dc.identifier.uri | http://hdl.handle.net/10251/64100 | |
dc.description.abstract | Ceria nanoparticles with rhodamine B groups covalently attached on their surface (RhB-CeNPs) were successfully prepared to simultaneously exhibit antioxidant activity and the ability to detect oxidant species. In order to use them for biomedical purposes, the nanoparticles were internalized in two human cell lines (HeLa and Hep3B), confirmed by confocal microscopy. In addition, their biocompatibility was assessed by performing proliferation, viability and apoptosis assays, in which they showed a remarkable lack of toxicity. Thereafter, the antioxidant activity of RhB-CeNPs against reactive oxygen species (ROS) in a model of oxidative stress was demonstrated in HeLa cells using the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. RhB-CeNPs exhibited higher cytosolic antioxidant activity than the well-established ceria nanoparticles. Surprisingly, the antioxidant capacity of RhB-CeNPs was evident when the ROS content of the cells increased notably (and was, therefore, harmful for those cells). Furthermore, the ability of RhB-CeNPs as ROS-content sensors was evaluated by measuring oxidative stress in HeLa cells using the intrinsic fluorescence of the rhodamine B groups present on the nanoparticles. The results with respect to the detection and quantification of ROS were similar to those obtained with DCFH-DA, a typical method of quantifying intracellular ROS. Our results demonstrate the potential of RhB-CeNPs as remarkably biocompatible theranostic agents with application in the field of oxidative stress. | es_ES |
dc.description.sponsorship | The present work was supported by the grant CP13/00252, PI13/1025 from Carlos III Health Institute, and by the European Regional Development Fund (ERDF). In addition, this study was financed by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315), the Generalitat Valenciana (Prometeo 2012-013), Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (UGP-14-095) and supported by the Spanish Ministry of Science and Innovation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC Advances | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | OXIDE NANOPARTICLES | es_ES |
dc.subject | NANOMEDICINE | es_ES |
dc.subject | CELLS | es_ES |
dc.subject | GOLD | es_ES |
dc.subject | PHOTODEGRADATION | es_ES |
dc.subject | LOCALIZATION | es_ES |
dc.subject | PERSPECTIVES | es_ES |
dc.subject | PROTECTION | es_ES |
dc.subject | DISEASES | es_ES |
dc.subject | THERAPY | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c5ra12794g | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CP13%2F00252/ES/CP13%2F00252/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FISABIO//UGP-14-095/ES/Disfunción endotelial-mitocondrial, estrés de retículo y autofagia en la diabetes tipo 2: Implicaciones, fisiopatologías, clínicas y terapéuticas/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Apostolova, N.; Rovira-Llopis, S.; Baldovi, HG.; Navalón Oltra, S.; Asiri, AM.; Victor, VM.; García Gómez, H.... (2015). Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress. RSC Advances. 5(97):79423-79432. https://doi.org/10.1039/c5ra12794g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c5ra12794g | es_ES |
dc.description.upvformatpinicio | 79423 | es_ES |
dc.description.upvformatpfin | 79432 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 97 | es_ES |
dc.relation.senia | 305158 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Espinet, C., Gonzalo, H., Fleitas, C., Menal, M., & Egea, J. (2015). Oxidative Stress and Neurodegenerative Diseases: A Neurotrophic Approach. Current Drug Targets, 16(1), 20-30. doi:10.2174/1389450116666150107153233 | es_ES |
dc.description.references | Matsuo, M. (2004). Aging and Oxidative Stress Resistance in Human Fibroblasts. Journal of Clinical Biochemistry and Nutrition, 35(2), 63-70. doi:10.3164/jcbn.35.63 | es_ES |
dc.description.references | Sohal, R. S., & Weindruch, R. (1996). Oxidative Stress, Caloric Restriction, and Aging. Science, 273(5271), 59-63. doi:10.1126/science.273.5271.59 | es_ES |
dc.description.references | Vitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature Reviews Endocrinology, 9(4), 228-240. doi:10.1038/nrendo.2013.29 | es_ES |
dc.description.references | Rocha, M., Apostolova, N., Herance, J. R., Rovira-Llopis, S., Hernandez-Mijares, A., & Victor, V. M. (2013). Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Medicinal Research Reviews, 34(1), 160-189. doi:10.1002/med.21285 | es_ES |
dc.description.references | Gutteridge, J. M. C., & Mitchell, J. (1999). Redox imbalance in the critically ill. British Medical Bulletin, 55(1), 49-75. doi:10.1258/0007142991902295 | es_ES |
dc.description.references | Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12(12), 931-947. doi:10.1038/nrd4002 | es_ES |
dc.description.references | Gutierrez-Merino, C., Lopez-Sanchez, C., Lagoa, R., K. Samhan-Arias, A., Bueno, C., & Garcia-Martinez, V. (2011). Neuroprotective Actions of Flavonoids. Current Medicinal Chemistry, 18(8), 1195-1212. doi:10.2174/092986711795029735 | es_ES |
dc.description.references | Martín, R., Menchón, C., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2010). Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress. ACS Nano, 4(11), 6957-6965. doi:10.1021/nn1019412 | es_ES |
dc.description.references | Raj, L., Ide, T., Gurkar, A. U., Foley, M., Schenone, M., Li, X., … Lee, S. W. (2011). Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 475(7355), 231-234. doi:10.1038/nature10167 | es_ES |
dc.description.references | Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(9), 2709-2729. doi:10.1016/j.bbagen.2014.05.017 | es_ES |
dc.description.references | Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443. doi:10.1056/nejmra0912273 | es_ES |
dc.description.references | Lohse, S. E., & Murphy, C. J. (2012). Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. Journal of the American Chemical Society, 134(38), 15607-15620. doi:10.1021/ja307589n | es_ES |
dc.description.references | Lu, A.-H., Salabas, E. L., & Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 46(8), 1222-1244. doi:10.1002/anie.200602866 | es_ES |
dc.description.references | Menchón, C., Martín, R., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2012). Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 8(12), 1895-1903. doi:10.1002/smll.201102255 | es_ES |
dc.description.references | Sau, T. K., Rogach, A. L., Jäckel, F., Klar, T. A., & Feldmann, J. (2010). Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 22(16), 1805-1825. doi:10.1002/adma.200902557 | es_ES |
dc.description.references | Valtchev, V., & Tosheva, L. (2013). Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 113(8), 6734-6760. doi:10.1021/cr300439k | es_ES |
dc.description.references | Della Rocca, J., Liu, D., & Lin, W. (2011). Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research, 44(10), 957-968. doi:10.1021/ar200028a | es_ES |
dc.description.references | Lee, D.-E., Koo, H., Sun, I.-C., Ryu, J. H., Kim, K., & Kwon, I. C. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41(7), 2656-2672. doi:10.1039/c2cs15261d | es_ES |
dc.description.references | Liu, J., Zheng, X., Yan, L., Zhou, L., Tian, G., Yin, W., … Zhao, Y. (2015). Bismuth Sulfide Nanorods as a Precision Nanomedicine for in Vivo Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 9(1), 696-707. doi:10.1021/nn506137n | es_ES |
dc.description.references | Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine-Challenge and Perspectives. Angewandte Chemie International Edition, 48(5), 872-897. doi:10.1002/anie.200802585 | es_ES |
dc.description.references | Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211 | es_ES |
dc.description.references | Zholobak, N. M., Shcherbakov, A. B., Vitukova, E. O., Yegorova, A. V., Scripinets, Y. V., Leonenko, I. I., … Ivanov, V. K. (2014). Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Adv., 4(93), 51703-51710. doi:10.1039/c4ra08292c | es_ES |
dc.description.references | Esch, F. (2005). Electron Localization Determines Defect Formation on Ceria Substrates. Science, 309(5735), 752-755. doi:10.1126/science.1111568 | es_ES |
dc.description.references | Turner, S., Lazar, S., Freitag, B., Egoavil, R., Verbeeck, J., Put, S., … Van Tendeloo, G. (2011). High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale, 3(8), 3385. doi:10.1039/c1nr10510h | es_ES |
dc.description.references | Dahle, J., & Arai, Y. (2015). Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. International Journal of Environmental Research and Public Health, 12(2), 1253-1278. doi:10.3390/ijerph120201253 | es_ES |
dc.description.references | Maldotti, A., Molinari, A., Juárez, R., & Garcia, H. (2011). Photoinduced reactivity of Au–H intermediates in alcohol oxidation by gold nanoparticles supported on ceria. Chemical Science, 2(9), 1831. doi:10.1039/c1sc00283j | es_ES |
dc.description.references | Estevez, A. Y., Pritchard, S., Harper, K., Aston, J. W., Lynch, A., Lucky, J. J., … Erlichman, J. S. (2011). Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 51(6), 1155-1163. doi:10.1016/j.freeradbiomed.2011.06.006 | es_ES |
dc.description.references | Gojova, A., Lee, J.-T., Jung, H. S., Guo, B., Barakat, A. I., & Kennedy, I. M. (2009). Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhalation Toxicology, 21(sup1), 123-130. doi:10.1080/08958370902942582 | es_ES |
dc.description.references | Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, (10), 1056. doi:10.1039/b615134e | es_ES |
dc.description.references | NIU, J., AZFER, A., ROGERS, L., WANG, X., & KOLATTUKUDY, P. (2007). Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovascular Research, 73(3), 549-559. doi:10.1016/j.cardiores.2006.11.031 | es_ES |
dc.description.references | Tarnuzzer, R. W., Colon, J., Patil, S., & Seal, S. (2005). Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters, 5(12), 2573-2577. doi:10.1021/nl052024f | es_ES |
dc.description.references | Banerjee, S. S., & Chen, D.-H. (2009). A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology, 20(18), 185103. doi:10.1088/0957-4484/20/18/185103 | es_ES |
dc.description.references | Das, M., Mishra, D., Dhak, P., Gupta, S., Maiti, T. K., Basak, A., & Pramanik, P. (2009). Biofunctionalized, Phosphonate-Grafted, Ultrasmall Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Multimodal Imaging. Small, 5(24), 2883-2893. doi:10.1002/smll.200901219 | es_ES |
dc.description.references | Shi, D., Ni, M., Luo, J., Akashi, M., Liu, X., & Chen, M. (2015). Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion. The Analyst, 140(4), 1306-1313. doi:10.1039/c4an01991a | es_ES |
dc.description.references | Vlashi, E., Kelderhouse, L. E., Sturgis, J. E., & Low, P. S. (2013). Effect of Folate-Targeted Nanoparticle Size on Their Rates of Penetration into Solid Tumors. ACS Nano, 7(10), 8573-8582. doi:10.1021/nn402644g | es_ES |
dc.description.references | Yuan, L., Lin, W., Zheng, K., He, L., & Huang, W. (2013). Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 42(2), 622-661. doi:10.1039/c2cs35313j | es_ES |
dc.description.references | Mehrdad, A., & Hashemzadeh, R. (2010). Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17(1), 168-172. doi:10.1016/j.ultsonch.2009.07.003 | es_ES |
dc.description.references | Qu, P., Zhao, J., Shen, T., & Hidaka, H. (1998). TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. Journal of Molecular Catalysis A: Chemical, 129(2-3), 257-268. doi:10.1016/s1381-1169(97)00185-4 | es_ES |
dc.description.references | Zhou, X., Lan, J., Liu, G., Deng, K., Yang, Y., Nie, G., … Zhi, L. (2011). Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light. Angewandte Chemie International Edition, 51(1), 178-182. doi:10.1002/anie.201105028 | es_ES |
dc.description.references | Kwak, J. H., He, Y., Yoon, B., Koo, S., Yang, Z., Kang, E. J., … Kim, J. S. (2014). Synthesis of rhodamine-labelled dieckol: its unique intracellular localization and potent anti-inflammatory activity. Chem. Commun., 50(86), 13045-13048. doi:10.1039/c4cc04270k | es_ES |
dc.description.references | Reisch, A., Didier, P., Richert, L., Oncul, S., Arntz, Y., Mély, Y., & Klymchenko, A. S. (2014). Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nature Communications, 5(1). doi:10.1038/ncomms5089 | es_ES |
dc.description.references | Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., Loetchutinat, C., & Mankhetkorn, S. (2003). Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. Journal of Biochemical and Biophysical Methods, 57(1), 1-16. doi:10.1016/s0165-022x(03)00032-0 | es_ES |
dc.description.references | Zakharova, G. V., Korobov, V. E., Shabalov, V. V., & Chibisov, A. K. (1983). Quenching of rhodamine-6G triplet state by inorganic ions in aqueous solutions. Journal of Applied Spectroscopy, 39(1), 765-768. doi:10.1007/bf00662817 | es_ES |
dc.description.references | Amstutz, V., Toghill, K. E., Powlesland, F., Vrubel, H., Comninellis, C., Hu, X., & Girault, H. H. (2014). Renewable hydrogen generation from a dual-circuit redox flow battery. Energy Environ. Sci., 7(7), 2350-2358. doi:10.1039/c4ee00098f | es_ES |
dc.description.references | Seeram, N. P., Henning, S. M., Niu, Y., Lee, R., Scheuller, H. S., & Heber, D. (2006). Catechin and Caffeine Content of Green Tea Dietary Supplements and Correlation with Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 54(5), 1599-1603. doi:10.1021/jf052857r | es_ES |