- -

Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Apostolova, Nadezda es_ES
dc.contributor.author Rovira-Llopis, Susana es_ES
dc.contributor.author Baldovi, Herme G. es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author Victor, Victor M. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Herance Camacho, Jose Raul es_ES
dc.date.accessioned 2016-05-16T07:48:29Z
dc.date.available 2016-05-16T07:48:29Z
dc.date.issued 2015
dc.identifier.issn 2046-2069
dc.identifier.uri http://hdl.handle.net/10251/64100
dc.description.abstract Ceria nanoparticles with rhodamine B groups covalently attached on their surface (RhB-CeNPs) were successfully prepared to simultaneously exhibit antioxidant activity and the ability to detect oxidant species. In order to use them for biomedical purposes, the nanoparticles were internalized in two human cell lines (HeLa and Hep3B), confirmed by confocal microscopy. In addition, their biocompatibility was assessed by performing proliferation, viability and apoptosis assays, in which they showed a remarkable lack of toxicity. Thereafter, the antioxidant activity of RhB-CeNPs against reactive oxygen species (ROS) in a model of oxidative stress was demonstrated in HeLa cells using the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. RhB-CeNPs exhibited higher cytosolic antioxidant activity than the well-established ceria nanoparticles. Surprisingly, the antioxidant capacity of RhB-CeNPs was evident when the ROS content of the cells increased notably (and was, therefore, harmful for those cells). Furthermore, the ability of RhB-CeNPs as ROS-content sensors was evaluated by measuring oxidative stress in HeLa cells using the intrinsic fluorescence of the rhodamine B groups present on the nanoparticles. The results with respect to the detection and quantification of ROS were similar to those obtained with DCFH-DA, a typical method of quantifying intracellular ROS. Our results demonstrate the potential of RhB-CeNPs as remarkably biocompatible theranostic agents with application in the field of oxidative stress. es_ES
dc.description.sponsorship The present work was supported by the grant CP13/00252, PI13/1025 from Carlos III Health Institute, and by the European Regional Development Fund (ERDF). In addition, this study was financed by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315), the Generalitat Valenciana (Prometeo 2012-013), Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (UGP-14-095) and supported by the Spanish Ministry of Science and Innovation. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject OXIDE NANOPARTICLES es_ES
dc.subject NANOMEDICINE es_ES
dc.subject CELLS es_ES
dc.subject GOLD es_ES
dc.subject PHOTODEGRADATION es_ES
dc.subject LOCALIZATION es_ES
dc.subject PERSPECTIVES es_ES
dc.subject PROTECTION es_ES
dc.subject DISEASES es_ES
dc.subject THERAPY es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5ra12794g
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CP13%2F00252/ES/CP13%2F00252/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FISABIO//UGP-14-095/ES/Disfunción endotelial-mitocondrial, estrés de retículo y autofagia en la diabetes tipo 2: Implicaciones, fisiopatologías, clínicas y terapéuticas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Apostolova, N.; Rovira-Llopis, S.; Baldovi, HG.; Navalón Oltra, S.; Asiri, AM.; Victor, VM.; García Gómez, H.... (2015). Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress. RSC Advances. 5(97):79423-79432. https://doi.org/10.1039/c5ra12794g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c5ra12794g es_ES
dc.description.upvformatpinicio 79423 es_ES
dc.description.upvformatpfin 79432 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 97 es_ES
dc.relation.senia 305158 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Espinet, C., Gonzalo, H., Fleitas, C., Menal, M., & Egea, J. (2015). Oxidative Stress and Neurodegenerative Diseases: A Neurotrophic Approach. Current Drug Targets, 16(1), 20-30. doi:10.2174/1389450116666150107153233 es_ES
dc.description.references Matsuo, M. (2004). Aging and Oxidative Stress Resistance in Human Fibroblasts. Journal of Clinical Biochemistry and Nutrition, 35(2), 63-70. doi:10.3164/jcbn.35.63 es_ES
dc.description.references Sohal, R. S., & Weindruch, R. (1996). Oxidative Stress, Caloric Restriction, and Aging. Science, 273(5271), 59-63. doi:10.1126/science.273.5271.59 es_ES
dc.description.references Vitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature Reviews Endocrinology, 9(4), 228-240. doi:10.1038/nrendo.2013.29 es_ES
dc.description.references Rocha, M., Apostolova, N., Herance, J. R., Rovira-Llopis, S., Hernandez-Mijares, A., & Victor, V. M. (2013). Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Medicinal Research Reviews, 34(1), 160-189. doi:10.1002/med.21285 es_ES
dc.description.references Gutteridge, J. M. C., & Mitchell, J. (1999). Redox imbalance in the critically ill. British Medical Bulletin, 55(1), 49-75. doi:10.1258/0007142991902295 es_ES
dc.description.references Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12(12), 931-947. doi:10.1038/nrd4002 es_ES
dc.description.references Gutierrez-Merino, C., Lopez-Sanchez, C., Lagoa, R., K. Samhan-Arias, A., Bueno, C., & Garcia-Martinez, V. (2011). Neuroprotective Actions of Flavonoids. Current Medicinal Chemistry, 18(8), 1195-1212. doi:10.2174/092986711795029735 es_ES
dc.description.references Martín, R., Menchón, C., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2010). Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress. ACS Nano, 4(11), 6957-6965. doi:10.1021/nn1019412 es_ES
dc.description.references Raj, L., Ide, T., Gurkar, A. U., Foley, M., Schenone, M., Li, X., … Lee, S. W. (2011). Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 475(7355), 231-234. doi:10.1038/nature10167 es_ES
dc.description.references Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(9), 2709-2729. doi:10.1016/j.bbagen.2014.05.017 es_ES
dc.description.references Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443. doi:10.1056/nejmra0912273 es_ES
dc.description.references Lohse, S. E., & Murphy, C. J. (2012). Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. Journal of the American Chemical Society, 134(38), 15607-15620. doi:10.1021/ja307589n es_ES
dc.description.references Lu, A.-H., Salabas, E. L., & Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 46(8), 1222-1244. doi:10.1002/anie.200602866 es_ES
dc.description.references Menchón, C., Martín, R., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2012). Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 8(12), 1895-1903. doi:10.1002/smll.201102255 es_ES
dc.description.references Sau, T. K., Rogach, A. L., Jäckel, F., Klar, T. A., & Feldmann, J. (2010). Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 22(16), 1805-1825. doi:10.1002/adma.200902557 es_ES
dc.description.references Valtchev, V., & Tosheva, L. (2013). Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 113(8), 6734-6760. doi:10.1021/cr300439k es_ES
dc.description.references Della Rocca, J., Liu, D., & Lin, W. (2011). Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research, 44(10), 957-968. doi:10.1021/ar200028a es_ES
dc.description.references Lee, D.-E., Koo, H., Sun, I.-C., Ryu, J. H., Kim, K., & Kwon, I. C. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41(7), 2656-2672. doi:10.1039/c2cs15261d es_ES
dc.description.references Liu, J., Zheng, X., Yan, L., Zhou, L., Tian, G., Yin, W., … Zhao, Y. (2015). Bismuth Sulfide Nanorods as a Precision Nanomedicine for in Vivo Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 9(1), 696-707. doi:10.1021/nn506137n es_ES
dc.description.references Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine-Challenge and Perspectives. Angewandte Chemie International Edition, 48(5), 872-897. doi:10.1002/anie.200802585 es_ES
dc.description.references Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211 es_ES
dc.description.references Zholobak, N. M., Shcherbakov, A. B., Vitukova, E. O., Yegorova, A. V., Scripinets, Y. V., Leonenko, I. I., … Ivanov, V. K. (2014). Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Adv., 4(93), 51703-51710. doi:10.1039/c4ra08292c es_ES
dc.description.references Esch, F. (2005). Electron Localization Determines Defect Formation on Ceria Substrates. Science, 309(5735), 752-755. doi:10.1126/science.1111568 es_ES
dc.description.references Turner, S., Lazar, S., Freitag, B., Egoavil, R., Verbeeck, J., Put, S., … Van Tendeloo, G. (2011). High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale, 3(8), 3385. doi:10.1039/c1nr10510h es_ES
dc.description.references Dahle, J., & Arai, Y. (2015). Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. International Journal of Environmental Research and Public Health, 12(2), 1253-1278. doi:10.3390/ijerph120201253 es_ES
dc.description.references Maldotti, A., Molinari, A., Juárez, R., & Garcia, H. (2011). Photoinduced reactivity of Au–H intermediates in alcohol oxidation by gold nanoparticles supported on ceria. Chemical Science, 2(9), 1831. doi:10.1039/c1sc00283j es_ES
dc.description.references Estevez, A. Y., Pritchard, S., Harper, K., Aston, J. W., Lynch, A., Lucky, J. J., … Erlichman, J. S. (2011). Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 51(6), 1155-1163. doi:10.1016/j.freeradbiomed.2011.06.006 es_ES
dc.description.references Gojova, A., Lee, J.-T., Jung, H. S., Guo, B., Barakat, A. I., & Kennedy, I. M. (2009). Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhalation Toxicology, 21(sup1), 123-130. doi:10.1080/08958370902942582 es_ES
dc.description.references Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, (10), 1056. doi:10.1039/b615134e es_ES
dc.description.references NIU, J., AZFER, A., ROGERS, L., WANG, X., & KOLATTUKUDY, P. (2007). Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovascular Research, 73(3), 549-559. doi:10.1016/j.cardiores.2006.11.031 es_ES
dc.description.references Tarnuzzer, R. W., Colon, J., Patil, S., & Seal, S. (2005). Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters, 5(12), 2573-2577. doi:10.1021/nl052024f es_ES
dc.description.references Banerjee, S. S., & Chen, D.-H. (2009). A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology, 20(18), 185103. doi:10.1088/0957-4484/20/18/185103 es_ES
dc.description.references Das, M., Mishra, D., Dhak, P., Gupta, S., Maiti, T. K., Basak, A., & Pramanik, P. (2009). Biofunctionalized, Phosphonate-Grafted, Ultrasmall Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Multimodal Imaging. Small, 5(24), 2883-2893. doi:10.1002/smll.200901219 es_ES
dc.description.references Shi, D., Ni, M., Luo, J., Akashi, M., Liu, X., & Chen, M. (2015). Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion. The Analyst, 140(4), 1306-1313. doi:10.1039/c4an01991a es_ES
dc.description.references Vlashi, E., Kelderhouse, L. E., Sturgis, J. E., & Low, P. S. (2013). Effect of Folate-Targeted Nanoparticle Size on Their Rates of Penetration into Solid Tumors. ACS Nano, 7(10), 8573-8582. doi:10.1021/nn402644g es_ES
dc.description.references Yuan, L., Lin, W., Zheng, K., He, L., & Huang, W. (2013). Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 42(2), 622-661. doi:10.1039/c2cs35313j es_ES
dc.description.references Mehrdad, A., & Hashemzadeh, R. (2010). Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17(1), 168-172. doi:10.1016/j.ultsonch.2009.07.003 es_ES
dc.description.references Qu, P., Zhao, J., Shen, T., & Hidaka, H. (1998). TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. Journal of Molecular Catalysis A: Chemical, 129(2-3), 257-268. doi:10.1016/s1381-1169(97)00185-4 es_ES
dc.description.references Zhou, X., Lan, J., Liu, G., Deng, K., Yang, Y., Nie, G., … Zhi, L. (2011). Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light. Angewandte Chemie International Edition, 51(1), 178-182. doi:10.1002/anie.201105028 es_ES
dc.description.references Kwak, J. H., He, Y., Yoon, B., Koo, S., Yang, Z., Kang, E. J., … Kim, J. S. (2014). Synthesis of rhodamine-labelled dieckol: its unique intracellular localization and potent anti-inflammatory activity. Chem. Commun., 50(86), 13045-13048. doi:10.1039/c4cc04270k es_ES
dc.description.references Reisch, A., Didier, P., Richert, L., Oncul, S., Arntz, Y., Mély, Y., & Klymchenko, A. S. (2014). Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nature Communications, 5(1). doi:10.1038/ncomms5089 es_ES
dc.description.references Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., Loetchutinat, C., & Mankhetkorn, S. (2003). Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. Journal of Biochemical and Biophysical Methods, 57(1), 1-16. doi:10.1016/s0165-022x(03)00032-0 es_ES
dc.description.references Zakharova, G. V., Korobov, V. E., Shabalov, V. V., & Chibisov, A. K. (1983). Quenching of rhodamine-6G triplet state by inorganic ions in aqueous solutions. Journal of Applied Spectroscopy, 39(1), 765-768. doi:10.1007/bf00662817 es_ES
dc.description.references Amstutz, V., Toghill, K. E., Powlesland, F., Vrubel, H., Comninellis, C., Hu, X., & Girault, H. H. (2014). Renewable hydrogen generation from a dual-circuit redox flow battery. Energy Environ. Sci., 7(7), 2350-2358. doi:10.1039/c4ee00098f es_ES
dc.description.references Seeram, N. P., Henning, S. M., Niu, Y., Lee, R., Scheuller, H. S., & Heber, D. (2006). Catechin and Caffeine Content of Green Tea Dietary Supplements and Correlation with Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 54(5), 1599-1603. doi:10.1021/jf052857r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem